人工晶体学报 ›› 2023, Vol. 52 ›› Issue (3): 394-404.
余海燕1,2, 梁海欧1, 白杰1, 李春萍1
收稿日期:
2022-07-13
出版日期:
2023-03-15
发布日期:
2023-04-06
通信作者:
李春萍,教授。E-mail:hgcp_li@126.com
作者简介:
余海燕(1990—),女,内蒙古自治区人,博士研究生,讲师。E-mail:2587269300@qq.com
基金资助:
YU Haiyan1,2, LIANG Haiou1, BAI Jie1, LI Chunping1
Received:
2022-07-13
Online:
2023-03-15
Published:
2023-04-06
摘要: 铜基硫化物禁带宽度窄,具有局域表面等离子体共振效应,对可见光有良好的吸收能力,且储量丰富、无毒,这些优势使铜基硫化物光催化剂引起了研究者们的广泛关注。然而,铜基硫化物光生电子和空穴复合速率高,可见光利用效率低,阻碍了其在光催化领域的应用,因此研究者们尝试了不同的改性策略提高其光催化性能。本文综述了铜基硫化物的改性策略,主要论述了形貌调控、晶相调控、半导体异质结等方式对铜基硫化物光催化性能的改性,分析了不同改性方法对铜基硫化物光催化性能提高的作用,以及铜基硫化物在光催化降解有机污染物、光解水产氢、光催化还原CO2等方面的应用,并对铜基硫化物改性研究方向做出了展望。
中图分类号:
余海燕, 梁海欧, 白杰, 李春萍. 铜基硫化物光催化改性研究进展[J]. 人工晶体学报, 2023, 52(3): 394-404.
YU Haiyan, LIANG Haiou, BAI Jie, LI Chunping. Research Progress of Photocatalytic Modification of Copper Based Sulfides[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(3): 394-404.
[1] SAYED M, YU J G, LIU G, et al. Non-noble plasmonic metal-based photocatalysts[J]. Chemical Reviews, 2022, 122(11): 10484-10537. [2] 王启明, 王 迪, 孙洪全, 等. 制备方法对量子点敏化太阳能电池CuS纳米晶对电极微观结构和性能的影响[J]. 硅酸盐学报, 2020, 48(3): 434-441. WANG Q M, WANG D, SUN H Q, et al. Microstructure and property of CuS nanocrystalline counter electrode in quantum dot sensitized cells[J]. Journal of the Chinese Ceramic Society, 2020, 48(3): 434-441 (in Chinese). [3] SANDS T D, WASHBURN J, GRONSKY R. High resolution observations of copper vacancy ordering in chalcocite (Cu2S) and the transformation to djurleite (Cu1.97 to 1.94 S)[J]. Physica Status Solidi (a), 1982, 72(2): 551-559. [4] KAR P, FARSINEZHAD S, ZHANG X J, et al. Anodic Cu2S and CuS nanorod and nanowall arrays: preparation, properties and application in CO2 photoreduction[J]. Nanoscale, 2014, 6(23): 14305-14318. [5] 胡铭华, 田 华, 贺军辉. 硫化铜空心纳米球的融硫修饰及其对水中Hg2+的高选择性吸附富集[J]. 无机化学学报, 2020, 36(4): 695-702. HU M H, TIAN H, HE J H. Sulfur-infused modification and highly selective enrichment of Hg2+ from aqueous solutions of CuS hollow nanospheres[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(4): 695-702 (in Chinese). [6] ROY P, SRIVASTAVA S K. Nanostructured copper sulfides: synthesis, properties and applications[J]. CrystEngComm, 2015, 17(41): 7801-7815. [7] COMIN A, MANNA L. New materials for tunable plasmonic colloidal nanocrystals[J]. Chemical Society Reviews, 2014, 43(11): 3957-3975. [8] 陈建金, 齐东丽, 刘 俊, 等. 射频磁控溅射制备高In组分Al1-xInxN薄膜及其光学性能[J]. 硅酸盐学报, 2021, 49(9): 1970-1975. CHEN J J, QI D L, LIU J, et al. Growth and optical properties of In-rich Al1-xInxN films by radio-frequency magnetron sputtering[J]. Journal of the Chinese Ceramic Society, 2021, 49(9): 1970-1975 (in Chinese). [9] LU X Y, DENG F, LIU M, et al. The regulation on visible-light photocatalytic activity of CuInS2 by different Cu/In molar ratio[J]. Materials Chemistry and Physics, 2018, 212: 372-377. [10] NAKAMURA Y, ISO Y, ISOBE T. Bandgap-tuned CuInS2/ZnS core/shell quantum dots for a luminescent downshifting layer in a crystalline silicon solar module[J]. ACS Applied Nano Materials, 2020, 3(4): 3417-3426. [11] HADKE S, HUANG M L, CHEN C, et al. Emerging chalcogenide thin films for solar energy harvesting devices[J]. Chemical Reviews, 2022, 122(11): 10170-10265. [12] XU W, XIE Z Z, HAN W J, et al. Rational design of interfacial energy level matching for CuGaS2 based photocatalysts over hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2022, 47(23): 11853-11862. [13] SHAHZAD K, TAHIR M B, SAGIR M, et al. Synthesis of novel p-n heterojunction Cu2SnS3/Ti3+-TiO2 for the complete tetracycline degradation in few minutes and photocatalytic activity under simulated solar irradiation[J]. Ceramics International, 2021, 47(22): 31337-31348. [14] WANG J Y, BO T T, SHAO B Y, et al. Effect of S vacancy in Cu3SnS4 on high selectivity and activity of photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2021, 297: 120498. [15] MAICUS M, LOPEZ E, SANCHEZ M C, et al. Magnetostatic energy calculations in two- and three-dimensional arrays of ferromagnetic prisms[J]. IEEE Transactions on Magnetics, 1998, 34(3): 601-607. [16] HASANVANDIAN F, ZEHTAB SALMASI M, MORADI M, et al. Enhanced spatially coupling heterojunction assembled from CuCo2S4 yolk-shell hollow sphere capsulated by Bi-modified TiO2 for highly efficient CO2 photoreduction[J]. Chemical Engineering Journal, 2022, 444: 136493. [17] MAO M, XU J, YU X B, et al. A Z-type heterojunction of bimetal sulfide CuNi2S4 and CoWO4 for catalytic hydrogen evolution[J]. Dalton Transactions, 2020, 49(19): 6457-6470. [18] JIANG R R, LU G H, NKOOM M, et al. Mineralization and toxicity reduction of the benzophenone-1 using 2D/2D Cu2WS4/BiOCl Z-scheme system: simultaneously improved visible-light absorption and charge transfer efficiency[J]. Chemical Engineering Journal, 2020, 400: 125913. [19] RAZA A, SHEN H L, HAIDRY A A. Novel Cu2ZnSnS4/Pt/g-C3N4 heterojunction photocatalyst with straddling band configuration for enhanced solar to fuel conversion[J]. Applied Catalysis B: Environmental, 2020, 277: 119239. [20] 鲍二蓬, 张硕卿, 邹吉军, 等. 特殊形貌光催化剂的研究进展[J]. 化学工业与工程, 2021, 38(2): 19-29. BAO E P, ZHANG S Q, ZOU J J, et al. Research progress on special-morphology photocatalysts[J]. Chemical Industry and Engineering, 2021, 38(2): 19-29 (in Chinese). [21] EKIMOV A I, EFROS A L, ONUSHCHENKO A A. Quantum size effect in semiconductor microcrystals[J]. Solid State Communications, 1985, 56(11): 921-924. [22] LI S, GE Z H, ZHANG B P, et al. Mechanochemically synthesized sub-5 nm sized CuS quantum dots with high visible-light-driven photocatalytic activity[J]. Applied Surface Science, 2016, 384: 272-278. [23] 岳阳阳, 韦 毅, 邓明龙, 等. 构造CuO/Cu2S复合微纳米晶材料及其光催化性能研究[J]. 化工新型材料, 2020, 48(7): 114-118+123. YUE Y Y, WEI Y, DENG M L, et al. Study on preparation and photocatalytic property of CuO/Cu2S micro-nanocrystal composite[J]. New Chemical Materials, 2020, 48(7): 114-118+123 (in Chinese). [24] ZHANG Y M, YANG X Y, WANG Y L, et al. Insight into l-cysteine-assisted growth of Cu2S nanoparticles on exfoliated MoS2 nanosheets for effective photoreduction removal of Cr(VI)[J]. Applied Surface Science, 2020, 518: 146191. [25] KAPURIA N, PATIL N N, RYAN K M, et al. Two-dimensional copper based colloidal nanocrystals: synthesis and applications[J]. Nanoscale, 2022, 14(8): 2885-2914. [26] ZOU J, LIAO G D, JIANG J Z, et al. Controllable interface engineering of g-C3N4/CuS heterojunction photocatalysts[J]. Social Science Electronic Publishing, 2019, 32: 178. [27] LIU Z M, LIU J, HUANG Y B, et al. From one-dimensional to two-dimensional wurtzite CuGaS2 nanocrystals: non-injection synthesis and photocatalytic evolution[J]. Nanoscale, 2018, 11(1): 158-169. [28] LI Y M, LIU J, LI X Y, et al. Evolution of hollow CuInS2 nanododecahedrons via kirkendall effect driven by cation exchange for efficient solar water splitting[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27170-27177. [29] DING Y, CHEN Y J, GUAN Z F, et al. Hierarchical CuS@ZnIn2S4 hollow double-shelled p-n heterojunction octahedra decorated with fullerene C60 for remarkable selectivity and activity of CO2 photoreduction into CH4[J]. ACS Applied Materials & Interfaces, 2022, 14(6): 7888-7899. [30] 欧金花, 胡波年, 周唤宇, 等. 透明Cu2S@氮掺杂碳纳米片用于双面量子点敏化太阳能电池对电极的性能[J]. 硅酸盐学报, 2020, 48(10): 1581-1588. OU J H, HU B N, ZHOU H Y, et al. Performance of transparent Cu2S@N-doped carbon film as counter electrode for bifacial quantum dot solar cells[J]. Journal of the Chinese Ceramic Society, 2020, 48(10): 1581-1588 (in Chinese). [31] SANTAMARIA-PEREZ D, GARBARINO G, CHULIA-JORDAN R, et al. Pressure-induced phase transformations in mineral chalcocite, Cu2S, under hydrostatic conditions[J]. Journal of Alloys and Compounds, 2014, 610: 645-650. [32] YANG X, JIANG S Q, ZHANG H C, et al. Pressure-induced structural phase transition and electrical properties of Cu2S[J]. Journal of Alloys and Compounds, 2018, 766: 813-817. [33] CAO Q, CHE R C, CHEN N. Scalable synthesis of Cu2S double-superlattice nanoparticle systems with enhanced UV/visible-light-driven photocatalytic activity[J]. Applied Catalysis B: Environmental, 2015, 162: 187-195. [34] TELKHOZHAYEVA M, KONAR R, LAVI R, et al. Phase-dependent photocatalytic activity of bulk and exfoliated defect-controlled flakes of layered copper sulfides under simulated solar light[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(48): 16103-16114. [35] 张转芳, 唐 林, 孙 立, 等. CuS/GO纳米复合材料的制备及光催化降解性能[J]. 精细化工, 2019, 36(2): 237-242. ZHANG Z F, TANG L, SUN L, et al. Preparation of CuS/GO nanocomposite and its photocatalytic degradation activity[J]. Fine Chemicals, 2019, 36(2): 237-242 (in Chinese). [36] FAKHRAVAR S, FARHADIAN M, TANGESTANINEJAD S. Excellent performance of a novel dual Z-scheme Cu2S/Ag2S/BiVO4 heterostructure in metronidazole degradation in batch and continuous systems: immobilization of catalytic particles on α-Al2O3 fiber[J]. Applied Surface Science, 2020, 505: 144599. [37] 申久英, 刘碧雯, 赵宇翔, 等. CuS-Bi2WO6/活性纳米碳纤维的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3): 1163-1172. SHEN J Y, LIU B W, ZHAO Y X, et al. Preparation and photocatalytic properties CuS-Bi2WO6/carbon nanofibers composites[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1163-1172 (in Chinese). [38] 李仁杰, 李园利, 李茜娅, 等.CuInS2/CdS基掺杂纳米晶的晶体结构、光谱性质及性能调控研究[J]. 化学研究与应用, 2021, 33(4): 699-707. LI R J, LI Y L, LI X Y, et al. Crystal structure, spectral properties and performance tailoring of CuInS2/CdS based doped colloidal nanocrystals[J]. Chemical Research and Application, 2021, 33(4): 699-707 (in Chinese). [39] ZHANG X J, GUO Y C, TIAN J, et al. Controllable growth of MoS2 nanosheets on novel Cu2S snowflakes with high photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 232: 355-364. [40] KAUSHIK B, YADAV S, RANA P, et al. Precisely engineered type II ZnO-CuS based heterostructure: a visible light driven photocatalyst for efficient mineralization of organic dyes[J]. Applied Surface Science, 2022, 590: 153053. [41] YUE Y M, ZHANG P X, WANG W, et al. Enhanced dark adsorption and visible-light-driven photocatalytic properties of narrower-band-gap Cu2S decorated Cu2O nanocomposites for efficient removal of organic pollutants[J]. Journal of Hazardous Materials, 2020, 384: 121302. [42] TANG Q Y, CHEN W F, LV Y R, et al. Z-scheme hierarchical Cu2S/Bi2WO6 composites for improved photocatalytic activity of glyphosate degradation under visible light irradiation[J]. Separation and Purification Technology, 2020, 236: 116243. [43] ZHANG R, YU J R, ZHANG T Q, et al. A novel snowflake dual Z-scheme Cu2S/RGO/Bi2WO6 photocatalyst for the degradation of bisphenol A under visible light and its effect on crop growth[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128526. [44] LEMOS DE SOUZA M, PEREIRA DOS SANTOS D, CORIO P. Localized surface plasmon resonance enhanced photocatalysis: an experimental and theoretical mechanistic investigation[J]. RSC Advances, 2018, 8(50): 28753-28762. [45] 张 轩, 郑丽君. 光解水制氢单相催化剂研究进展[J]. 化工进展, 2021, 40(S1): 215-222. ZHANG X, ZHENG L J. Process of single phase photocatalysts for hydrogen production[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 215-222 (in Chinese). [46] MANZI A, SIMON T, SONNLEITNER C, et al. Light-induced cation exchange for copper sulfide based CO2 reduction[J]. Journal of the American Chemical Society, 2015, 137(44): 14007-14010. [47] KIM Y, PARK K Y, JANG D M, et al. Synthesis of Au-Cu2S core-shell nanocrystals and their photocatalytic and electrocatalytic activity[J]. The Journal of Physical Chemistry C, 2010, 114(50): 22141-22146. [48] ZHANG R, WANG H Y, LI Y Y, et al. Investigation on the photocatalytic hydrogen evolution properties of Z-scheme Au NPs/CuInS2/NCN-CNx composite photocatalysts[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(21): 7286-7297. [49] 刘 果, 吴维成, 卢圆圆, 等. 低温下制备具有高光催化降解罗丹明B活性的CuS/TiO2复合材料[J]. 人工晶体学报, 2016, 45(6): 1567-1573. LIU G, WU W C, LU Y Y, et al. Preparation of CuS/TiO2 composites with high photocatalytic activity at low temperature for degradation of rodamine B[J]. Journal of Synthetic Crystals, 2016, 45(6): 1567-1573 (in Chinese). [50] 张克杰, 李 宇, 夏 源, 等. 核壳结构CdS/CuS纳米复合材料的制备及光催化性能[J]. 高等学校化学学报, 2019, 40(3): 489-497. ZHANG K J, LI Y, XIA Y, et al. Synthesis and photocatalytic performance of CdS/CuS core-shell nanocomposites[J]. Chemical Journal of Chinese Universities, 2019, 40(3): 489-497 (in Chinese). [51] 曾 斌, 曾武军, 刘万锋. 通用法制备石墨烯/硫化铜微米花和石墨烯/硫化亚锡微米花及在水污染处理中的应用[J]. 人工晶体学报, 2019, 48(3): 494-498. ZENG B, ZENG W J, LIU W F. Graphene/CuS microflower and graphene/SnS microflower prepared by general method and its application in the water treatment[J]. Journal of Synthetic Crystals, 2019, 48(3): 494-498 (in Chinese). [52] 曾 斌, 曾武军, 刘万锋. 绿色合成石墨烯负载硫化铜/硫化镉多级纳米球及在水污染处理中的应用[J].人工晶体学报, 2019, 48(10): 1907-1911. ZENG B, ZENG W J, LIU W F. Green synthesis of graphene-CuS/Cd S hierarchical nanospheres and its application in the water treatment[J]. Journal of Synthetic Crystals, 2019, 48(10): 1907-1911 (in Chinese). [53] 赵晶晶, 张正中, 陈小浪, 等. 微波诱导组装CuS@MoS2核壳纳米管及其光催化类芬顿反应研究[J]. 化学学报, 2020, 78(9): 961-967. ZHAO J J, ZHANG Z Z, CHEN Z L, et al. Microwave-induced assembly of CuS@MoS2 core-shell nanotubes and study on their photocatalytic Fenton-like reactions[J]. Acta Chimica Sinica, 2020, 78(9): 961-967 (in Chinese). [54] KAUSHIK B, RANA P, SOLANKI K, et al. In-situ synthesis of 3-D hierarchical ZnFe2O4 modified Cu2S snowflakes: exploring their bifunctionality in selective photocatalytic reduction of nitroarenes and methyl orange degradation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 433: 114165. [55] YANG J H, FANG L, GAN X H, et al. Efficient degradation of sulfamethoxazole under visible light irradiation by polyaniline/copper sulfide composite photocatalyst[J]. Environmental Science and Pollution Research, 2022, 29(24): 36502-36511. [56] CHEN Q S, ZHOU H Q, WANG J C, et al. Activating earth-abundant insulator BaSO4 for visible-light induced degradation of tetracycline[J]. Applied Catalysis B: Environmental, 2022, 307: 121182. [57] ZOU J, LIAO G D, WANG H T, et al. Controllable interface engineering of g-C3N4/CuS nanocomposite photocatalysts[J]. Journal of Alloys and Compounds, 2022, 911: 165020. [58] JAFARINEJAD A, BASHIRI H, SALAVATI-NIASARI M. Sonochemical synthesis and characterization of CuInS2 nanostructures using new sulfur precursor and their application as photocatalyst for degradation of organic pollutants under simulated sunlight[J]. Arabian Journal of Chemistry, 2022, 15(8): 104007. [59] GUO J R, WANG L P, WEI X, et al. Direct Z-scheme CuInS2/Bi2MoO6 heterostructure for enhanced photocatalytic degradation of tetracycline under visible light[J]. Journal of Hazardous Materials, 2021, 415: 125591. [60] WANG T, MEN Q Y, LIU X Q, et al. A staggered type of 0D/2D CuInS2/NiAl-LDH heterojunction with enhanced photocatalytic performance for the degradation of 2, 4-Dichlorophenol[J]. Separation and Purification Technology, 2022, 294: 121215. [61] LIU C Q, ZHANG B, LIU E Z, et al. Nano composite of CuInS2/ZnO with improved photocatalytic activity of degradation and hydrogen production[J]. Optical Materials, 2020, 109: 110379. [62] CHEN Q H, ZHANG M M, LI J Y, et al. Construction of immobilized 0D/1D heterostructure photocatalyst Au/CuS/CdS/TiO2 NBs with enhanced photocatalytic activity towards moxifloxacin degradation[J]. Chemical Engineering Journal, 2020, 389: 124476. [63] BHOI Y P, MISHRA B G. Photocatalytic degradation of alachlor using type-II CuS/BiFeO3 heterojunctions as novel photocatalyst under visible light irradiation[J]. Chemical Engineering Journal, 2018, 344: 391-401. [64] IERVOLINO G, VAIANO V, SANNINO D, et al. Hydrogen production from glucose degradation in water and wastewater treated by Ru-LaFeO3/Fe2O3 magnetic particles photocatalysis and heterogeneous photo-Fenton[J]. International Journal of Hydrogen Energy, 2018, 43(4): 2184-2196. [65] WANG Y Z, CHEN D, QIN L S, et al. Hydrogenated ZnIn2S4 microspheres: boosting photocatalytic hydrogen evolution by sulfur vacancy engineering and mechanism insight[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(45): 25484-25494. [66] REDDY D A, KIM Y, GOPANNAGARI M, et al. Recent advances in metal-organic framework-based photocatalysts for hydrogen production[J]. Sustainable Energy & Fuels, 2021, 5(6): 1597-1618. [67] GUO W W, KIM J, KIM H, et al. Cu-Co-P electrodeposited on carbon paper as an efficient electrocatalyst for hydrogen evolution reaction in anion exchange membrane water electrolyzers[J]. International Journal of Hydrogen Energy, 2021, 46(38): 19789-19801. [68] HOU J W, HUANG B X, KONG L C, et al. One-pot hydrothermal synthesis of CdS-CuS decorated TiO2 NTs for improved photocatalytic dye degradation and hydrogen production[J]. Ceramics International, 2021, 47(21): 30860-30868. [69] LUO J H, LIN Z X, ZHAO Y, et al. The embedded CuInS2 into hollow-concave carbon nitride for photocatalytic H2O splitting into H2 with S-scheme principle[J]. Chinese Journal of Catalysis, 2020, 41(1): 122-130. [70] FAN H T, WU Z, LIU K C, et al. Fabrication of 3D CuS@ZnIn2S4 hierarchical nanocages with 2D/2D nanosheet subunits p-n heterojunctions for improved photocatalytic hydrogen evolution[J]. Chemical Engineering Journal, 2022, 433: 134474. [71] XIN X, SONG Y R, GUO S H, et al. In-situ growth of high-content 1T phase MoS2 confined in the CuS nanoframe for efficient photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2020, 269: 118773. [72] VEMPULURU N R, KANAKKAMPALAYAM KRISHNAN C, PARNAPALLI R, et al. Solar hydrogen generation from organic substance using earth abundant CuS-NiO heterojunction semiconductor photocatalyst[J]. Ceramics International, 2021, 47(7): 10206-10215. [73] MAHADIK M A, PATIL R P, CHAE W S, et al. Microwave-assisted rapid synthesis of Cu2S∶ZnIn2S4 marigold-like nanoflower heterojunctions and enhanced visible light photocatalytic hydrogen production via Pt sensitization[J]. Journal of Industrial and Engineering Chemistry, 2022, 108: 203-214. [74] RAO V N, RAVI P, SATHISH M, et al. Titanate quantum dots-sensitized Cu2S nanocomposites for superficial H2 production via photocatalytic water splitting[J]. International Journal of Hydrogen Energy, 2022, 47(95): 40379-40390. [75] WU Y L, ZHANG H Y, LI Y J, et al. Partial phosphating of Ni-MOFs and Cu2S snowflakes form 2D/2D structure for efficiently improved photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2022, 47(86): 36530-36542. [76] WANG G R, QUAN Y K, YANG K C, et al. EDA-assisted synthesis of multifunctional snowflake-Cu2S/CdZnS S-scheme heterojunction for improved the photocatalytic hydrogen evolution[J]. Journal of Materials Science & Technology, 2022, 121: 28-39. [77] HOU F Y, LIU F, WU H C, et al. In situ synthesis of Cu3P/P-doped g-C3N4 tight 2D/2D heterojunction boosting photocatalytic H2 evolution[J]. Chinese Journal of Chemistry, 2023, 41(2): 173-180. [78] SARILMAZ A, GENC E, ASLAN E, et al. Photocatalytic hydrogen evolution via solar-driven water splitting by CuSbS2 with different shapes[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400: 112706. [79] YU H Y, LIANG H O, BAI J, et al. Controllable growth of coral-like CuInS2 on one-dimensional SiO2 nanotube with super-hydrophilicity for enhanced photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2022, 47(66): 28410-28422. [80] WANG Y, PENG J R, XU Y F, et al. Facile fabrication of CdSe/CuInS2 microflowers with efficient photocatalytic hydrogen production activity[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8294-8302. |
[1] | 张韬, 薛喆, 万方, 张天颖, 彭广盼, 黄国栋. 微米及纳米WC-Co基BDD污水处理电极的制备研究[J]. 人工晶体学报, 2023, 52(2): 354-362. |
[2] | 单恒升, 李明慧, 李诚科, 刘胜威, 梅云俭, 宋一凡, 李小亚. AlGaN双势垒结构对高In组分InGaN/GaN MQWs太阳能电池材料晶体质量和发光性能的影响[J]. 人工晶体学报, 2023, 52(1): 83-88. |
[3] | 熊智慧, 孔博, 李志西, 曾体贤, 帅春. La掺杂氧空位的α-Bi2O3电子结构和光学性质的第一性原理研究[J]. 人工晶体学报, 2023, 52(1): 98-104. |
[4] | 兰博洋, 祁婉欣, 李东, 韩凤兰. 具有n-n型异质结的复合材料Bi2S3/MIL-125(Ti)光电性能研究[J]. 人工晶体学报, 2023, 52(1): 139-148. |
[5] | 梁发文, 官海汕, 李江鸿, 李帅, 黄俊兰, 江学顶, 李富华, 陈忻, 许伟城. 非金属掺杂改性g-C3N4光催化降解水中有机污染物的研究进展[J]. 人工晶体学报, 2023, 52(1): 170-181. |
[6] | 孟汝浩, 班新星, 左宏森, 李跃, 栗正新, 邵俊永, 孙冠男, 郝素叶, 韩少星, 张霖, 张国威, 周少杰. TiO2/g-C3N4复合粉体的制备及其在紫外/芬顿反应中光催化性能[J]. 人工晶体学报, 2022, 51(8): 1466-1472. |
[7] | 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. 双轴应变对g-ZnO/WS2异质结电子结构及光学性质影响的第一性原理计算[J]. 人工晶体学报, 2022, 51(7): 1202-1211. |
[8] | 王静怡, 张众, 王梓兰, 于鑫颖, 由君颐, 朱君怡, 杨琳. 吡啶鎓盐配体构筑的多钼酸基配合物的合成、结构及光催化性能[J]. 人工晶体学报, 2022, 51(7): 1227-1232. |
[9] | 张雷, 李瑞, 樊彩梅. Bi4O5Br2/Ti3C2-Ru复合光催化剂的合成及其对磺胺甲噁唑药物废水降解性能研究[J]. 人工晶体学报, 2022, 51(7): 1248-1256. |
[10] | 尹佳奇, 余春燕, 翟光美, 李天保, 张竹霞. 铟镓共掺杂对n-ZnO纳米棒/p-GaN异质结生长行为和光电性能的影响[J]. 人工晶体学报, 2022, 51(6): 1012-1019. |
[11] | 贾维海, 杨昆, 王智, 周庭艳, 黄海深, 吴波. 完全Heusler合金Cr2ZrSb/Sc2FeSn(100)异质结的结构、电磁特性及电子性质[J]. 人工晶体学报, 2022, 51(6): 1020-1027. |
[12] | 秦英恋, 秦建芳. 基于构象灵活的N-杂环配体构筑的3D拟卤化亚铜配合物的合成、结构和性质研究[J]. 人工晶体学报, 2022, 51(6): 1059-1068. |
[13] | 杨江涛, 李璇, 陈泽红, 张蔚, 王忠德. Ti/SnO2-IrO2电极的制备及其电化学降解对氯苯酚[J]. 人工晶体学报, 2022, 51(6): 1076-1084. |
[14] | 杜康, 寇丽芳, 张小超. EDTA辅助水热法合成BiYO3及其高效光还原CO2性能研究[J]. 人工晶体学报, 2022, 51(6): 1085-1091. |
[15] | 杨思琪, 郑永杰, 张宏瑞, 赵云鹏, 田景芝. g-C3N4基异质结的光催化应用研究进展[J]. 人工晶体学报, 2022, 51(6): 1110-1121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||