[1] LV P, XIONG S L, SUN X L, et al. A low-energy sensitive compact gamma-ray detector based on LaBr3 and SiPM for GECAM[J]. Journal of Instrumentation, 2018, 13(8): P08014. [2] 宋瑞强, 安正华, 吴金杰, 等. GECAM卫星LaBr3(Ce)探测器低能区性能研究[J]. 核电子学与探测技术, 2020, 40(3): 467-473. SONG R Q, AN Z H, WU J J, et al. Research on the performance of GECAM satellite LaBr3(Ce) detector in low energy region[J]. Nuclear Electronics & Detection Technology, 2020, 40(3): 467-473 (in Chinese). [3] 胡一鸣, 常 进, 王楠森, 等. 用于外太空伽玛射线探测的溴化镧晶体探测器: CN102540237A[P]. 2012-07-04. HU Y M, CHANG J, WANG N S, et al. LaBr3 crystal detectors for gamma-ray detection in outer space. China: CN102540237A[P]. 2012-07-04. [4] 邹本飞, 桂 强, 张明荣. 掺铈溴化镧闪烁晶体封装技术的研究[J]. 人工晶体学报, 2016, 45(1): 64-68. ZOU B F, GUI Q, ZHANG M R. Study on the packaging technology of La Br3∶Ce scintillation crystal[J]. Journal of Synthetic Crystals, 2016, 45(1): 64-68 (in Chinese). [5] AN Z H, SUN X L, ZHANG D L, et al. The design and performance of GRD onboard the GECAM satellite[J]. Radiation Detection Technology and Methods, 2022, 6(1): 43-52. [6] 李新乔, 文向阳, 安正华, 等. GECAM卫星有效载荷介绍[J]. 中国科学:物理学 力学 天文学, 2020, 50(12): 84-100. LI X Q, WEN X Y, AN Z H, et al. The GECAM and its payload[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2020, 50(12): 84-100 (in Chinese). [7] 史宏声, 秦来顺, 魏钦华, 等. 自发成核Bridgman法生长LaBr3∶Ce晶体[J]. 人工晶体学报, 2010, 39(S1): 231-233. SHI H S, QIN L S, WEI Q H, et al. Growth of LaBr3∶Ce crystal by spontaneous nucleation bridgman method[J]. Journal of Synthetic Crystals, 2010, 39(S1): 231-233 (in Chinese). [8] ZHANG D L, LI X Q, XIONG S L, et al. Energy response of GECAM gamma-ray detector based on LaBr3∶Ce and SiPM array[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 921: 8-13. [9] ZHANG D L, GAO M, SUN X L, et al. Quality assurance test and failure analysis of SiPM arrays of GECAM satellites[J]. Radiation Detection Technology and Methods, 2022, 6(1): 35-42. [10] GLODO J, HIGGINS W M, VAN LOEF E V D, et al. Scintillation properties of 1 inch Cs2LiYCl6 crystals[J]. IEEE Transactions on Nuclear Science, 2008, 55(3): 1206-1209. [11] DORENBOS P. Fundamental limitations in the performance of Ce3+, Pr3+, and Eu2+ activated scintillators[J]. IEEE Transactions on Nuclear Science, 2010, 57(3): 1162-1167. [12] DONG C, MA M, ZHOU R, et al. Energy resolution and time resolution of SiPM coupled LYSO crystal detector[J]. Nuclear Electronics and Detection Technology, 2017, 37(1): 1-3+19. [13] ATANOV N. Energy and time resolution of a LYSO matrix prototype for the Mu2e experiment[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 824: 684-685. [14] ZHU R. Radiation damage in scintillating crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 413(2/3): 297-311. [15] 邹树梁, 徐守龙. BGO闪烁晶体的辐照损伤及恢复研究进展[J]. 南华大学学报(自然科学版), 2013, 27(1): 1-6. ZOU S L, XU S L. Summary of radiation damage and recovery about BGO scintillation crystals[J]. Journal of University of South China (Science and Technology), 2013, 27(1): 1-6 (in Chinese). |