[1] GUNTER P, HUIGNARD J P. Photorefractive materials and their applications: materials[M]. Heidelberg: Springer Verlag, 2006. [2] 孙 军, 郝永鑫, 张 玲, 等. 铌酸锂晶体及其应用概述[J]. 人工晶体学报, 2020, 49(6): 947-964. SUN J, HAO Y X, ZHANG L, et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 2020, 49(6): 947-964 (in Chinese). [3] 孔勇发. 多功能光电材料:铌酸锂晶体[M]. 北京: 科学出版社, 2005. KONG Y F. Multifunctional photoelectric material: lithium niobate crystal[M]. Beijing: Science Press, 2005 (in Chinese). [4] 高博锋, 任梦昕, 郑大怀, 等. 铌酸锂的耄耋之路: 历史与若干进展[J]. 人工晶体学报, 2021, 50(7): 1183-1199. GAO B F, REN M X, ZHENG D H, et al. Long-lived lithium niobate: history and progress[J]. Journal of Synthetic Crystals, 2021, 50(7): 1183-1199 (in Chinese). [5] 张 雄, 高作轩, 高开放, 等. 铌酸锂基光伏微流体操控技术[J]. 人工晶体学报, 2021, 50(7): 1327-1339. ZHANG X, GAO Z X, GAO K F, et al. Photovoltaic microfluidic manipulation based on lithium niobate[J]. Journal of Synthetic Crystals, 2021, 50(7): 1327-1339 (in Chinese). [6] GUO Y B, LIAO Y, CAO L C, et al. Improvement of photorefractive properties and holographic applications of lithium niobate crystal[J]. Optics Express, 2004, 12(22): 5556-5561. [7] KONG Y F, BO F, WANG W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 2020, 32(3): e1806452. [8] ZHANG G Y, XU J J, LIU S M, et al. Study of resistance against photorefractive light-induced scattering in LiNbO3∶Fe, Mg crystals[J]. Proc SPIE, 1995, 14: 2529. [9] VOLK T R, RAZUMOVSKI N V, MAMAEV A V, et al. Hologram recording in Zn-doped LiNbO3 crystals[J]. Josa B, 1996, 13(7): 1457-1460. [10] 郑大怀, 张宇琦, 王烁琳, 等. 铌酸锂晶体的光折变效应[J]. 人工晶体学报, 2022, 51(S1): 1626-1642. ZHENG D H, ZHANG Y Q, WANG S L, et al. Photorefractive effect of lithium niobate crystals[J]. Journal of Synthetic Crystals, 2022, 51(S1): 1626-1642 (in Chinese). [11] ZHENG W, LIU B, BI J C, et al. Holographic associative memory by phase conjugate of four-wave-mixing in Sc∶Fe∶LiNbO3 crystal[J]. Optics Communications, 2005, 246(4/5/6): 297-301. [12] LI S Q, LIU S G, KONG Y F, et al. Enhanced photorefractive properties of LiNbO3∶Fe crystals by HfO2 codoping[J]. Applied Physics Letters, 2006, 89(10): 101126. [13] KONG Y F, WU S Q, LIU S G, et al. Fast photorefractive response and high sensitivity of Zr and Fe codoped LiNbO3 crystals[J]. Applied Physics Letters, 2008, 92(25): 251107. [14] LIU B, LI C L, BI J C, et al. Photorefractive features of non-stoichiometry codoped Hf∶Fe∶LiNbO3 single crystals[J]. Crystal Research and Technology, 2008, 43(3): 260-265. [15] LI S Q, LIU S G, KONG Y F, et al. The optical damage resistance and absorption spectra of LiNbO3∶Hf crystals[J]. Journal of Physics: Condensed Matter, 2006, 18(13): 3527-3534. [16] YAN W B, CHEN H J, SHI L H, et al. Investigations of the light-induced scattering varied with HfO2 codoping in LiNbO3∶Fe crystals[J]. Applied Physics Letters, 2007, 90(21): 211108. [17] MINZIONI P, CRISTIANI I, YU J, et al. Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals[J]. Optics Express, 2007, 15(21): 14171-14176. [18] YAN W B, SHI L H, CHEN H J, et al. Investigations on the UV photorefractivity of LiNbO3∶Hf[J]. Optics Letters, 2010, 35(4): 601-603. [19] YAN W B, SHI L H, CHEN H J, et al. Investigations of the OH- absorption bands in congruent and near-stoichiometric LiNbO3∶Hf crystals[J]. EPL, 2010, 91(3): 36002. [20] KUKHTAREV N V, MARKOV V B, ODULOV S G, et al. Holographic storage in electrooptic crystals. i. steady state[J]. Ferroelectrics, 1978, 22(1): 949-960. [21] JERMANN F, OTTEN J. Light-induced charge transport in LiNbO3∶Fe at high light intensities[J]. Josa B, 1993, 10(11): 2085-2092. [22] KAMBER N Y, XU J J, MIKHA S M, et al. Threshold effect of incident light intensity for the resistance against the photorefractive light-induced scattering in doped lithium niobate crystals[J]. Optics Communications, 2000, 176(1/2/3): 91-96. [23] KONG Y F, ZHANG W L, CHEN X J, et al. Absorption spectra of pure lithium niobate crystals[J]. Journal of Physics: Condensed Matter, 1999, 11(9): 2139-2143. |