[1] KUMAR A. Theoretical analysis of CZTS/CZTSSe tandem solar cell[J]. Optical and Quantum Electronics, 2021, 53(9): 528. [2] VALLISREE S, SHARMA A, THANGAVEL R, et al. Investigations of carrier transport mechanism and junction formation in Si/CZTS dual absorber solar cell technology[J]. Applied Physics A, 2020, 126(3): 163. [3] NWAMBAEKWE KELECHI C, SURU J D V, DOUMAN SAMANTHA F, et al. Crystal engineering and thin-film deposition strategies towards improving the performance of kesterite photovoltaic cell[J]. Journal of Materials Research and Technology, 2021, 12: 1252-1287. [4] CHEN S Y, WALSH A, GONG X G, et al. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers[J]. Advanced Materials, 2013, 25(11): 1522-1539. [5] TAGREROUT A, RACHED H, DRIEF M, et al. An extensive computational report on the quinary alloys Cu2Zn1-xCdxSnS4 for the solar cell systems: dft simulation[J]. Computational Condensed Matter, 2022, 31: e00670. [6] PAYNO D, KAZIM S, AHMAD S. Impact of cation substitution in all solution-processed Cu2(Cd, Zn)SnS4 superstrate solar cells[J]. Journal of Materials Chemistry C, 2021, 9(48): 17392-17400. [7] SU Z H, TAN J M R, LI X L, et al. Cation substitution of solution-processed Cu2ZnSnS4 thin film solar cell with over 9% efficiency[J]. Advanced Energy Materials, 2015, 5(19): 1500682. [8] SU Z H, LIANG G X, FAN P, et al. Device postannealing enabling over 12% efficient solution-processed Cu2ZnSnS4 solar cells with Cd2+ substitution[J]. Advanced Materials, 2020, 32(32): 2000121. [9] FU J, TIAN Q W, ZHOU Z J, et al. Improving the performance of solution-processed Cu2ZnSn(S, Se)4 photovoltaic materials by Cd2+ substitution[J]. Chemistry of Materials, 2016, 28(16): 5821-5828. [10] COUREL M, MARTINEZ-AYALA A, SANCHEZ T G, et al. Impact of Cd concentrations on the physical properties of Cu2(CdxZn1-x)SnS4 thin films[J]. Superlattices and Microstructures, 2018, 122: 324-335. [11] WANG W, BAI H, ZHI G W, et al. Preparation of Cu2CdxZn1-xSnS4 thin films by nanoparticle ink method[J]. Materials Research Express, 2021, 8(10): 106401. [12] SHIN B, GUNAWAN O, ZHU Y, et al. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4absorber[J]. Progress in Photovoltaics: Research and Applications, 2013, 21(1): 72-76. [13] WANG K, GUNAWAN O, TODOROV T, et al. Thermally evaporated Cu2ZnSnS4 solar cells[J]. Applied Physics Letters, 2010, 97(14): 143508. [14] 张晓伟, 韩文浩, 徐玉刚, 等. 铜锌锡硫薄膜太阳电池研究综述[J]. 电源技术, 2017, 41(11): 1667-1670. ZHANG X W, HAN W H, XU Y G, et al. Review of Cu2ZnSnS4 thin film solar cells[J]. Chinese Journal of Power Sources, 2017, 41(11): 1667-1670 (in Chinese). [15] KHALKAR A, LIM K S, YU S M, et al. Effect of growth parameters and annealing atmosphere on the properties of Cu2ZnSnS4thin films deposited by cosputtering[J]. International Journal of Photoenergy, 2013, 2013: 1-7. [16] ASHFAQ A, JACOB J, BANO N, et al. A two step technique to remove the secondary phases in CZTS thin films grown by sol - gel method[J]. Ceramics International, 2019, 45(8): 10876-10881. [17] ALTOWAIRQI Y, ALSUBAIE A, STROH K P, et al. The effect of annealing conditions: temperature, time, ramping rate and atmosphere on nanocrystal Cu2ZnSnS4 (CZTS) thin film solar cell properties[J]. Materials Today: Proceedings, 2019, 18: 473-486. [18] SUN K L, YAN C, HUANG J L, et al. Minority lifetime and efficiency improvement for CZTS solar cells via Cd ion soaking and post treatment[J]. Journal of Alloys and Compounds, 2018, 750: 328-332. [19] HWANG S K, PARK J H, CHEON K B, et al. Improved interfacial properties of electrodeposited Cu2ZnSn(S, Se)4 thin-film solar cells by a facile post-heat treatment process[J]. Progress in Photovoltaics: Research and Applications, 2020, 28(12): 1345-1354. [20] SCRAGG J J S, CHOUBRAC L, LAFOND A, et al. A low-temperature order-disorder transition in Cu2ZnSnS4 thin films[J]. Applied Physics Letters, 2014, 104(4): 041911. [21] WEBER A, MAINZ R, SCHOCK H W. On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum[J]. Journal of Applied Physics, 2010, 107(1): 013516. [22] 赵佳斌, 李晓亮, 王吉宁, 等. 共溅射法制备Zn元素梯度分布Cu2ZnSnS4薄膜[J]. 稀有金属, 2018, 42(12): 1281-1286. ZHAO J B, LI X L, WANG J N, et al. Preparation of Cu2ZnSnS4 films with Zn element gradient structure by Co-sputtering[J]. Chinese Journal of Rare Metals, 2018, 42(12): 1281-1286 (in Chinese). [23] ZHAO Q C, SHEN H L, XU Y J, et al. Effect of CZTS/CCZTS stacked structures prepared through split-cycle on the performance of flexible solar cells[J]. ACS Applied Energy Materials, 2022, 5(3): 3668-3676. [24] WANG S J, HUANG L, YE Z, et al. Fabrication of high-efficiency Cu2(Zn, Cd)SnS4 solar cells by a rubidium fluoride assisted co-evaporation/annealing method[J]. Journal of Materials Chemistry A, 2021, 9(45): 25522-25530. |