[1] WOLF S D, HOLOVSKY J, MOON S J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance[J]. The Journal of Physical Chemistry Letters, 2014, 5(6): 1035-1039. [2] WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites[J]. Advanced Materials, 2014, 26(10): 1584-1589. [3] STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341-344. [4] NOH J H, IM S H, HEO J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters, 2013, 13(4): 1764-1769. [5] NREL. Best research-cell efficiency chart[EB/OL].https://www.nrel.gov/pv/cell-efficiency.html. [6] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519. [7] CHRISTIANS J A, FUNG R C M, KAMAT P V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide[J]. Journal of the American Chemical Society, 2014, 136(2): 758-764. [8] ARORA N, DAR M I, HINDERHOFER A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20[J]. Science, 2017, 358(6364): 768-771. [9] LIU C, ZHOU X Y, CHEN S M, et al. Hydrophobic Cu2O quantum dots enabled by surfactant modification as top hole-transport materials for efficient perovskite solar cells[J]. Advanced Science, 2019, 6(7): 1801169. [10] SHAIKH J S, SHAIKH N S, MISHRA Y K, et al. Low-cost Cu-based inorganic hole transporting materials in perovskite solar cells: recent progress and state-of-art developments[J]. Materials Today Chemistry, 2021, 20: 100427. [11] YE T L, SUN X C, ZHANG X R, et al. Recent advances of Cu-based hole transport materials and their interface engineering concerning different processing methods in perovskite solar cells[J]. Journal of Energy Chemistry, 2021, 62: 459-476. [12] TIRADO J, ROLDÁN-CARMONA C, MUÑOZ-GUERRERO F A, et al. Copper sulfide nanoparticles as hole-transporting-material in a fully-inorganic blocking layers n-i-p perovskite solar cells: application and working insights[J]. Applied Surface Science, 2019, 478: 607-614. [13] GHRIBI F, ALYAMANI A, AYADI Z B, et al. Study of CuS thin films for solar cell applications sputtered from nanoparticles synthesised by hydrothermal route[J]. Energy Procedia, 2015, 84: 197-203. [14] KALANUR S S, SEO H. Synthesis of CuxS thin films with tunable localized surface plasmon resonances[J]. ChemistrySelect, 2018, 3(21): 5920-5926. [15] PATIL S A, MENGAL N, MEMON A A, et al. CuS thin film grown using the one pot, solution-process method for dye-sensitized solar cell applications[J]. Journal of Alloys and Compounds, 2017, 708: 568-574. [16] AHMAD K, RAZA W, KHAN R A, et al. Numerical simulation of NH3(CH2)2NH3MnCl4 based Pb-free perovskite solar cells via SCAPS-1D[J]. Nanomaterials, 2022, 12(19): 3407. [17] 李清流, 甘永进, 覃斌毅, 等. 基于Cu2O和SnO2的钙钛矿太阳电池数值模拟[J]. 电源技术, 2020, 44(9): 1321-1323+1359. LI Q L, GAN Y J, QIN B Y, et al. Numerical simulation of perovskite solar cell based on Cu2O and SnO2[J]. Chinese Journal of Power Sources, 2020, 44(9): 1321-1323+1359 (in Chinese). [18] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643-647. [19] ABNAVI H, MARAM D K, ABNAVI A. Performance analysis of several electron/hole transport layers in thin film MAPbI3-based perovskite solar cells: a simulation study[J]. Optical Materials, 2021, 118: 111258. [20] HIRASAWA M, ISHIHARA T, GOTO T, et al. Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3[J]. Physica B: Condensed Matter, 1994, 201: 427-430. [21] LIN L Y, JIANG L Q, LI P, et al. A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing[J]. Journal of Physics and Chemistry of Solids, 2019, 124: 205-211. [22] HAIDER S Z, ANWAR H, WANG M Q. Theoretical device engineering for high-performance perovskite solar cells using CuSCN as hole transport material boost the efficiency above 25%[J]. Physica Status Solidi (a), 2019, 216(11): 1900102. [23] HAIDER M I, FAKHARUDDIN A, AHMED S, et al. Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells[J]. Solar Energy, 2022, 233: 326-336. [24] WU Y Z, ISLAM A, YANG X D, et al. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition[J]. Energy & Environmental Science, 2014, 7(9): 2934-2938. [25] YANG S, DAI J, YU Z H, et al. Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells[J]. Journal of the American Chemical Society, 2019, 141(14): 5781-5787. [26] ABATE A, SALIBA M, HOLLMAN D J, et al. Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells[J]. Nano Letters, 2014, 14(6): 3247-3254. [27] CHEN J Z, SEO J Y, PARK N G. Simultaneous improvement of photovoltaic performance and stability by in situ formation of 2D perovskite at (FAPbI3)0.88 (CsPbBr3)0.12/CuSCN interface[J]. Advanced Energy Materials, 2018, 8(12): 1702714. [28] TAN K, LIN P, WANG G, et al. Controllable design of solid-state perovskite solar cells by SCAPS device simulation[J]. Solid-State Electronics, 2016, 126: 75-80. [29] XIONG L B, GUO Y X, WEN J, et al. Review on the application of SnO2 in perovskite solar cells[J]. Advanced Functional Materials, 2018, 28(35): 1802757. [30] SAIVE R. S-shaped current-voltage characteristics in solar cells: a review[J]. IEEE Journal of Photovoltaics, 2019, 9(6): 1477-1484. [31] SADHU A, RAI M, SALIM T, et al. Dual role of Cu-chalcogenide as hole-transporting layer and interface passivator for p-i-n architecture perovskite solar cell[J]. Advanced Functional Materials, 2021, 31(38): 2103807. [32] CASTELLANOS-ÁGUILA J E, LODEIRO L, MENÉNDEZ-PROUPIN E, et al. Atomic-scale model and electronic structure of Cu2O/CH3NH3PbI3 interfaces in perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 44648-44657. [33] ABDELAZIZ S, ZEKRY A, SHAKER A, et al. Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation[J]. Optical Materials, 2020, 101: 109738. [34] 甘永进, 蒋曲博, 覃斌毅, 等. 锡基钙钛矿太阳能电池载流子传输层的探讨[J]. 物理学报, 2021, 70(3): 038801. GAN Y J, JIANG Q B, QIN B Y, et al. Carrier transport layers of tin-based perovskite solar cells[J]. Acta Physica Sinica, 2021, 70(3): 038801 (in Chinese). [35] BANSAL S, ARYAL P. Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations[C]//2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). June 5-10, 2016, Portland, OR, USA. IEEE, 2016: 747-750. [36] WANG H X, YU Z, JIANG X, et al. Efficient and stable inverted planar perovskite solar cells employing CuI as hole-transporting layer prepared by solid-gas transformation[J]. Energy Technology, 2017, 5(10): 1836-1843. [37] ZHUANG X M, SUN R, ZHOU D L, et al. Synergistic effects of multifunctional lanthanides doped CsPbBrCl2 quantum dots for efficient and stable MAPbI3 perovskite solar cells[J]. Advanced Functional Materials, 2022, 32(18): 2110346. |