[1] HOU G F, SUN H H,JIANG Z Y, et al. Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China[J]. Applied Energy, 2016, 164: 882-890. [2] PENG L H, QIN S, GU X B. Effects of melting parameters and quartz purity on silica glass crucible produced by arc method[J]. Engineering Research Express, 2020, 2(1): 015046. [3] 孙占喜, 李涛陈, 官 元. 一种石英坩埚生产工艺: CN104445886A[P]. 2014-11-24. SONG Z X, LI T C, GUAN Y. Production process of quartz crucible: CN104445886-A[P]. 2014-11-24 (in Chinese). [4] 张大虎, 田青越, 汪 灵, 等. 单晶硅生长用石英坩埚的组成与结构特征[J]. 矿物岩石, 2016, 36(1): 12-16. ZHANG D H, TIAN Q Y, WANG L, et al. Composition and structure of the quartz crucible for monocrystalline growth[J]. Journal of Mineralogy and Petrology, 2016, 36(1): 12-16 (in Chinese). [5] PAULSEN O, RRVIK S, MUGGWRUD, et al. Bubble distribution in fused quartz crucibles studied by micro X-ray computational tomography. Comparing 2D and 3D analysis[J]. Journal of Crystal Growth, 2019, 520: 96-104. [6] TOSHIRO M, SUSUMU M,MITSUO H, et al. In-situ observation of bubble formation at silicon melt-silica glass interface[J]. Journal of Crystal Growth, 2011, 318(1): 196-199. [7] LIU X, GAO B, KOICHI K. Numerical investigation of carbon contamination during the melting process of Czochralski silicon crystal growth[J]. Journal of Crystal Growth, 2015, 417: 58-64. [8] VOROB’EV A N, SID’KO A P, KALAEV V V. Advanced chemical model for analysis of Cz and DS Si-crystal growth[J]. Journal of Crystal Growth, 2014, 386: 226-234. [9] CHEN C, CHIANG P Y, CHANG C H, et al. Three-dimensional numerical simulation of flow, thermal and oxygen distributions for a Czochralski silicon growth with in a transverse magnetic field[J]. Journal of Crystal Growth, 2014, 401: 813-819. [10] VEGADA M, BHATT N M. Effect of location of zero Gauss plane on oxygen concentration at crystal melt interface during growth of magnetic silicon single crystal using czochralski technique[J]. Procedia Technology, 2016, 23: 480-487. [11] LIU X, HIROFUMI H, YOSHIJI M, et al. Transient global modeling for the pulling process of Czochralski silicon crystal growth. II. Investigation on segregation of oxygen and carbon[J]. Journal of Crystal Growth, 2020, 532: 125404. [12] ZHAO W H, LI J C, LIU L J. Control of oxygen impurities in a continuous-feeding Czochralski-silicon crystal growth by the double-crucible method[J]. Crystals, 2021, 11(3): 264. [13] 罗晓斌, 张 波, 辛玉龙. 直拉法硅单晶中石英坩埚析晶问题的探讨[J]. 河南科技, 2014(4): 64. LUO X B, ZHANG B, XIN Y L. Discussion on crystallization of quartz crucible in Czochralski silicon single crystal[J]. Journal of Henan Science and Technology, 2014(4): 64 (in Chinese). [14] HIRSCH A, TREMPA M, SCHULZE M, et al. Factors influencing the gas bubble evolution and the cristobalite formation in quartz glass Cz crucibles for Czochralski growth of silicon crystals[J]. Journal of Crystal Growth, 2021, 570: 126231. [15] HUANG X M, HOSHIKAWA T, UDA S. Analysis of the reaction at the interface between Si melt and Ba-doped silica glass[J]. Journal of Crystal Growth, 2007, 306(2): 422-427. [16] 石星宇. 连续拉晶下石英坩埚内气泡变化规律及晶棒的性能研究[D]. 银川: 宁夏大学, 2022. SHI X Y. Study on the change law of bubbles in quartz crucible and the properties of crystal rod under continuous crystal pulling[D]. Yinchuan: Ningxia University, 2022 (in Chinese). [17] 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019: 28-3. TAO W Q, Heat transfer[M]. Version 5. Beijing: Higher Education Press, 2019:28-3 (in Chinese). [18] 陈明祥. 弹塑性力学[M]. 北京: 科学出版社, 2007. CHEN M X. Elastoplastic mechanics[M]. Beijing: Science Press, 2007 (in Chinese). [19] LIN X B, SMITH R A. Finite element modelling of fatigue crack growth of surface cracked plates[J]. Engineering Fracture Mechanics, 1999, 63(5): 503-522. [20] 宋德双, 周思柱, 曾 云, 等. 轴向载荷下油管点蚀坑-裂纹应力强度因子研究[J]. 石油机械,2021, 49(6): 116-122. SONG D S, ZHOU S Z, ZENG Y, et al. Study on stress intensity factor of pit-crack of tubing under axial load[J]. China Petroleum Machinery, 2021, 49(6): 116-122 (in Chinese). |