人工晶体学报 ›› 2024, Vol. 53 ›› Issue (1): 38-50.
李宏1, 廖鑫1,2, 侯静1, 徐众1
收稿日期:
2023-05-21
出版日期:
2024-01-15
发布日期:
2024-01-15
通信作者:
廖 鑫,工程师。E-mail:280449731@qq.com
作者简介:
李 宏(1985—),女,四川省人,博士研究生,讲师。E-mail:353386825@qq.com
基金资助:
LI Hong1, LIAO Xin1,2, HOU Jing1, XU Zhong1
Received:
2023-05-21
Online:
2024-01-15
Published:
2024-01-15
摘要: 目前,绝大多数高效有机-无机卤化物钙钛矿(OIHP)太阳能电池都是由多晶钙钛矿薄膜构成,这些多晶薄膜表面或晶界往往含有大量的缺陷,将导致光生载流子发生非辐射复合,并诱导OIHP材料分解,从而使器件的光电转换效率(PCE)和稳定性降低。本综述分析了钙钛矿太阳能电池的缺陷类型及缺陷对钙钛矿太阳能电池(PSCs)性能的影响,详细介绍了通过钝化电极与传输层,或传输层与钙钛矿层间的界面缺陷以获得更高效率和高稳定性的钙钛矿太阳能电池方面的研究进展,展望了钝化分子的设计思路及钙钛矿光伏商业化应用所面临的挑战。
中图分类号:
李宏, 廖鑫, 侯静, 徐众. 钙钛矿太阳能电池界面缺陷及其抑制方法[J]. 人工晶体学报, 2024, 53(1): 38-50.
LI Hong, LIAO Xin, HOU Jing, XU Zhong. Interface Defects of Perovskite Solar Cells and Their Suppression Methods[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 38-50.
[1] NATIONAL renewable energy laboratory. Best research-cell effciencies[EB/OL].[2023-04-20].http://www.nrel.gov/ pv/assets/pdfs/cell-pv-eff-emergingpv-rev211214.pdf. [2] HUANG J, SHAO Y, DONG Q. Organometal trihalide perovskite single crystals: a next wave of materials for 25% efficiency photovoltaics and applications beyond?[J]. The Journal of Physical Chemistry Letters, 2015, 6(16): 3218-3227. [3] HUANG J, YUAN Y, SHAO Y, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications[J]. Nature Reviews Materials, 2017, 2(7): 17042. [4] WERNER J, WALTER A, RUCAVADO E, et al. Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells[J]. Applied Physics Letters, 2016, 109(23): 233902. [5] ANARAKI E H, KERMANPUR A, STEIER L, et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J]. Energy & Environmental Science, 2016, 9(10): 3128-3134. [6] BUSH K A, PALMSTROM A F, YU Z J, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability[J]. Nature Energy, 2017, 2(4): 17009. [7] SAHLI F, WERNER J, KAMINO B A, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nature Materials, 2018, 17(9): 820-826. [8] YU Z, LEILAEIOUN M, HOLMAN Z. Selecting tandem partners for silicon solar cells[J]. Nature Energy, 2016, 1(11): 16137. [9] EPERON G E, LEIJTENS T, BUSH K A, et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps[J]. Science, 2016, 354(6314): 861-865. [10] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519. [11] AGIORGOUSIS M L, SUN Y Y, ZENG H, et al. Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3[J]. Journal of the American Chemical Society, 2014, 136(41): 14570-14575. [12] YIN W, SHI T, YAN Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber[J]. Applied Physics Letters, 2014, 104(6): 063903. [13] STEIRER K X, SCHULZ P, TEETER G, et al. Defect tolerance in methylammonium lead triiodide perovskite[J]. ACS Energy Letters, 2016, 1(2): 360-366. [14] WALSH A, SCANLON D O, CHEN S, et al. Self-regulation mechanism for charged point defects in hybrid halide perovskites[J]. Angewandte Chemie, 2015, 127(6): 1811-1814. [15] KIM J, LEE S H, LEE J H, et al. The role of intrinsic defects in methylammonium lead iodide perovskite[J]. The Journal of Physical Chemistry Letters, 2014, 5(8): 1312-1317. [16] BALL M J, PETROZZA A. Defects in perovskite-halides and their effects in solar cells[J]. Nature Energy, 2016, 1(11): 16149. [17] STRANKS S D. Nonradiative losses in metal halide perovskites[J]. ACS Energy Letters, 2017, 2(7): 1515-1525. [18] PAZOS L, XIAO T P, YABLONOVITCH E. Fundamental efficiency limit of lead iodide perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2018, 9(7): 1703-1711. [19] TRESS W, MARINOVA N, INGANÄS O, et al. Predicting the open-circuit voltage of CH3NH3PbI3 Perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination[J]. Advanced Energy Materials, 2015, 5(3): 1400812. [20] SHAO Y, XIAO Z, BI C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nature Communications, 2014, 5: 5784. [21] ABATE A, SALIBA M, HOLLMAN D J, et al. Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells[J]. Nano Letters, 2014, 14(6): 3247-3254. [22] SHOCKLEY W, READ W T. Statistics of the recombinations of holes and electrons[J]. Physical Review, 1952, 87(5): 835-842. [23] CAO Y, GAO F, XIANG L, et al. Defects passivation strategy for efficient and stable perovskite solar cells[J]. Advanced Materials Interfaces, 2022, 9(21): 2200179. [24] TRESS W, MARINOVA N, MOEHL T, et al. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field[J]. Energy & Environmental Science, 2015, 8(3): 995-1004. [25] CHEN B, YANG M, PRIYA S, et al. Origin of J-V hysteresis in perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(5): 905-917. [26] AZPIROZ J M, MOSCONI E, BISQUERT J, et al. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation[J]. Energy & Environmental Science, 2015, 8(7): 2118-2127. [27] EAMES C, FROST J M, BARNES P R F, et al. Ionic transport in hybrid lead iodide perovskite solar cells[J]. Nature Communications, 2015, 6: 7497. [28] YUAN Y, HUANG J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability[J]. Accounts of Chemical Research, 2016, 49(2): 286-293. [29] XING J, WANG Q, DONG Q, et al. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(44): 30484-30490. [30] KANG D H, PARK N G. On the current-voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis[J]. Advanced Materials, 2019, 31(34): 1805214. [31] HOKE E T, SLOTCAVAGE D J, DOHNER E R, et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J]. Chemical Science, 2015, 6(1): 613-617. [32] BISCHAK C G, HETHERINGTON C L, WU H, et al. Origin of reversible photoinduced phase separation in hybrid perovskites[J]. Nano Letters, 2017, 17(2): 1028-1033. [33] SHEN H, OMELCHENKO S T, JACOBS D A, et al. In situ recombination junction between p-Si and TiO2 enables high-efficiency monolithic perovskite/Si tandem cells[J]. Science Advances, 2018, 4(12): eaau9711. [34] KIM H S, SEO J Y, PARK N G. Material and device stability in perovskite solar cells[J]. ChemSusChem, 2016, 9(18): 2528-2540. [35] AHN N, SON D Y, JANG I H, et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide[J]. Journal of the American Chemical Society, 2015, 137(27): 8696-8699. [36] ZHANG F, XIAO C, CHEN X, et al. Self-seeding growth for perovskite solar cells with enhanced stability[J]. Joule, 2019, 3(6): 1452-1463. [37] FORTUNATO E, GINLEY D, HOSONO H, et al. Transparent conducting oxides for photovoltaics[J]. MRS Bulletin, 2007, 32(3): 242-247. [38] TAYLOR M P, READEY D W, VAN HEST M F A M, et al. The remarkable thermal stability of amorphous In-Zn-O transparent conductors[J]. Advanced Functional Materials, 2008, 18(20): 3169-3178. [39] DOU B, MILLER E M, CHRISTIANS J A, et al. High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO[J]. The Journal of Physical Chemistry Letters, 2017, 8(19): 4960-4966. [40] BOSCARINO S, CRUPI I, MIRABELLA S, et al. TCO/Ag/TCO transparent electrodes for solar cells application[J]. Applied Physics A, 2014, 116(3): 1287-1291. [41] TORRISI G, CAVALIERE E, BANFI F, et al. Ag cluster beam deposition for TCO/Ag/TCO multilayer[J]. Solar Energy Materials and Solar Cells, 2019, 199: 114-121. [42] BAI S, GUO X, CHEN T, et al. Solution process fabrication of silver nanowire composite transparent conductive films with tunable work function[J]. Thin Solid Films, 2020, 709: 138096. [43] ZHOU H, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196): 542-546. [44] MA J, YANG G, QIN M, et al. MgO nanoparticle modified anode for highly efficient SnO2-based planar perovskite solar cells[J]. Advanced Science, 2017, 4(9): 1700031. [45] ALTINKAYA C, AYDIN E, UGUR E, et al. Tin oxide electron-selective layers for efficient, stable, and scalable perovskite solar cells[J]. Advanced Materials, 2021, 33(15): 2005504. [46] SEOK S I, GRÄTZEL M, PARK N G. Methodologies toward highly efficient perovskite solar cells[J]. Small, 2018, 14(20): 1704177. [47] LEIJTENS T, EPERON G E, PATHAK S, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells[J]. Nature Communications, 2013, 4: 2885. [48] LEE S W, KIM S, BAE S, et al. Enhanced UV stability of perovskite solar cells with a SrO interlayer[J]. Organic Electronics, 2018, 63: 343-348. [49] ZAKY A A, CHRISTOPOULOS E, GKINI K, et al. Enhancing efficiency and decreasing photocatalytic degradation of perovskite solar cells using a hydrophobic copper-modified titania electron transport layer[J]. Applied Catalysis B: Environmental, 2021, 284: 119714. [50] SIRIPRAPARAT A, PONCHAI J, KANJANABOOS P, et al. Efficiency enhancement of perovskite solar cells by using Ag- or Ag-Cu composite-doped surface passivation of the electron transport layer[J]. Applied Surface Science, 2021, 562: 150147. [51] LIU X, WU J, LI G, et al. Defect control strategy by bifunctional thioacetamide at low temperature for highly efficient planar perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12883-12891. [52] DING B, ZHAO X, WANG S, et al. Mechanism of improving the performance of perovskite solar cells through alkali metal bis(trifluoromethanesulfonyl)imide modifying mesoporous titania electron transport layer[J]. Journal of Power Sources, 2021, 484: 229275. [53] TAN H, JAIN A, VOZNYY O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J]. Science, 2017, 355(6326): 722-726. [54] GONG J, YANG M, REBOLLAR D, et al. Divalent anionic doping in perovskite solar cells for enhanced chemical stability[J]. Advanced Materials, 2018, 30(34): 1800973. [55] YANG G, CHEN C, YAO F, et al. Effective carrier-concentration tuning of SnO2 quantum dot electron-selective layers for high-performance planar perovskite solar cells[J]. Advanced Materials, 2018, 30(14): 1706023. [56] WANG Z, KAMARUDIN M A, HUEY N C, et al. Interfacial sulfur functionalization anchoring SnO2 and CH3NH3PbI3 for enhanced stability and trap passivation in perovskite solar cells[J]. ChemSusChem, 2018, 11(22): 3941-3948. [57] AI Y, LIU W, SHOU C, et al. SnO2 surface defects tuned by (NH4)2S for high-efficiency perovskite solar cells[J]. Solar Energy, 2019, 194: 541-547. [58] WANG Z, WU T, XIAO L, et al. Multifunctional potassium hexafluorophosphate passivate interface defects for high efficiency perovskite solar cells[J]. Journal of Power Sources, 2021, 488: 229451. [59] BI H, LIU B, HE D, et al. Interfacial defect passivation and stress release by multifunctional KPF6 modification for planar perovskite solar cells with enhanced efficiency and stability[J]. Chemical Engineering Journal, 2021, 418: 129375. [60] WANG H, LI F, WANG P, et al. Chlorinated fullerene dimers for interfacial engineering toward stable planar perovskite solar cells with 22.3% efficiency[J]. Advanced Energy Materials, 2020, 10(21): 2000615. [61] LIU K, CHEN S, WU J, et al. Fullerene derivative anchored SnO2 for high-performance perovskite solar cells[J]. Energy & Environmental Science, 2018, 11(12): 3463-3471. [62] TIAN C, LIN K, LU J, et al. Interfacial bridge using a cis-fulleropyrrolidine for efficient planar perovskite solar cells with enhanced stability[J]. Small Methods, 2020, 4(5): 1900476. [63] HUANG S K, WANG Y C, KE W C, et al. Unravelling the origin of the photocarrier dynamics of fullerene-derivative passivation of SnO2 electron transporters in perovskite solar cells[J]. Journal of Materials Chemistry A, 2020, 8(44): 23607-23616. [64] SUN Y, ZHANG J, YU H, et al. Mechanism of bifunctional p-amino benzenesulfonic acid modified interface in perovskite solar cells[J]. Chemical Engineering Journal, 2021, 420: 129579. [65] TSAREV S, OLTHOF S, BOLDYREVA A G, et al. Reactive modification of zinc oxide with methylammonium iodide boosts the operational stability of perovskite solar cells[J]. Nano Energy, 2021, 83: 105774. [66] ZUO L, GU Z, YE T, et al. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer[J]. Journal of the American Chemical Society, 2015, 137(7): 2674-2679. [67] HAWASH Z, RAGA S R, SON D Y, et al. Interfacial modification of perovskite solar cells using an ultrathin MAI layer leads to enhanced energy level alignment, efficiencies, and reproducibility[J]. The Journal of Physical Chemistry Letters, 2017, 8(17): 3947-3953. [68] CHO K T, PAEK S, GRANCINI G, et al. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface[J]. Energy & Environmental Science, 2017, 10(2): 621-627. [69] ZHOU Q, LIANG L, HU J, et al. High-performance perovskite solar cells with enhanced environmental stability based on a (p-FC6H4C2H4NH3)2[PbI4] capping layer[J]. Advanced Energy Materials, 2019, 9(12): 1802595. [70] MA C, PARK N G. Paradoxical approach with a hydrophilic passivation layer for moisture-stable, 23% efficient perovskite solar cells[J]. ACS Energy Letters, 2020, 5(10): 3268-3275. [71] LIU Y, AKIN S, PAN L, et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22[J]. Science Advances, 2019, 5(6): eaaw2543. [72] ZHU H, LIU Y, EICKEMEYER F T, et al. Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency[J]. Advanced Materials, 2020, 32(12): 1907757. [73] JIANG Q, ZHAO Y, ZHANG X, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13(7): 460-466. [74] ALHARBI E A, ALYAMANI A Y, KUBICKI D J, et al. Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells[J]. Nature Communications, 2019, 10: 3008. [75] LUO D, YANG W, WANG Z, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells[J]. Science, 2018, 360(6396): 1442-1446. [76] QIAN F, YUAN S, CAI Y, et al. Novel surface passivation for stable FA0.85 MA0.15 PbI3 perovskite solar cells with 21.6% efficiency[J]. Solar RRL, 2019, 3(7): 1900072. [77] LUO J, XIA J, YANG H, et al. Novel approach toward hole-transporting layer doped by hydrophobic Lewis acid through infiltrated diffusion doping for perovskite solar cells[J]. Nano Energy, 2020, 70: 104509. [78] WU Y, YANG X, CHEN W, et al. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering[J]. Nature Energy, 2016, 1: 16148. [79] FU Q, XIAO S, TANG X, et al. Amphiphilic fullerenes employed to improve the quality of perovskite films and the stability of perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24782-24788. [80] ZHANG H, WU Y, SHEN C, et al. Efficient and stable chemical passivation on perovskite surface via bidentate anchoring[J]. Advanced Energy Materials, 2019, 9(13): 1803573. [81] LIU L, HUANG S, LU Y, et al. Grain-boundary “patches” by in situ conversion to enhance perovskite solar cells stability[J]. Advanced Materials, 2018, 30(29): 1800544. [82] WANG R, XUE J, WANG K L, et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics[J]. Science, 2019, 366(6472): 1509-1513. [83] KOUSHIK D, VERHEES W J H, KUANG Y, et al. High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture[J]. Energy & Environmental Science, 2017, 10(1): 91-100. [84] WANG H, ZHAO Y, WANG Z, et al. Hermetic seal for perovskite solar cells: an improved plasma enhanced atomic layer deposition encapsulation[J]. Nano Energy, 2020, 69: 104375. [85] BI D, YI C, LUO J, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%[J]. Nature Energy, 2016, 1: 16142. [86] CHAUDHARY B, KULKARNI A, JENA A K, et al. Poly(4-vinylpyridine)-based interfacial passivation to enhance voltage and moisture stability of lead halide perovskite solar cells[J]. ChemSusChem, 2017, 10(11): 2473-2479. [87] GUO P, YE Q, LIU C, et al. Double barriers for moisture degradation: assembly of hydrolysable hydrophobic molecules for stable perovskite solar cells with high open-circuit voltage[J]. Advanced Functional Materials, 2020, 30(28): 2002639. [88] MENG L, SUN C, WANG R, et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21[J]. Journal of the American Chemical Society, 2018, 140(49): 17255-17262. [89] XU W, ZHU T, WU H, et al. Poly(ethylene glycol) diacrylate as the passivation layer for high-performance perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 45045-45055. [90] WANG Y, WU T, Barbaud J, et al. Stabilizing heterostructures of soft perovskite semiconductors[J]. Science, 2019, 365(6454): 687-691. [91] WU S, ZHANG J, LI Z, et al. Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells[J]. Joule, 2020, 4(6): 1248-1262. [92] LIU X, CHENG Y, TANG B, et al. Shallow defects levels and extract detrapped charges to stabilize highly efficient and hysteresis-free perovskite photovoltaic devices[J]. Nano Energy, 2020, 71: 104556. [93] CHEN W, ZHOU Y, CHEN G, et al. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells[J]. Advanced Energy Materials, 2019, 9(19): 1803872. [94] CHENG Y, LI M, LIU X, et al. Impact of surface dipole in NiOx on the crystallization and photovoltaic performance of organometal halide perovskite solar cells[J]. Nano Energy, 2019, 61: 496-504. [95] SHI H, LIU C, JIANG Q, et al. Effective approaches to improve the electrical conductivity of PEDOT∶PSS: a review[J]. Advanced Electronic Materials, 2015, 1(4): 1500017. [96] HU X, MENG X, ZHANG L, et al. A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells[J]. Joule, 2019, 3(9): 2205-2218. |
[1] | 李佳宁, 葛欣, 黄子轩, 刘振, 王鹏阳, 石标, 赵颖, 张晓丹. 自组装层修饰溅射氧化镍对刮涂制备的宽带隙钙钛矿太阳电池性能影响研究[J]. 人工晶体学报, 2023, 52(8): 1458-1466. |
[2] | 余纳, 许从艳, 李秋莲, 陈玉飞, 赵永刚, 周志能, 杨鑫, 王书荣. 少量锗的加入对铜锌锡硒薄膜及其器件性能的影响[J]. 人工晶体学报, 2023, 52(3): 460-466. |
[3] | 黄孝坤, 杨爱军, 黎健生, 江琳沁, 邱羽. 基于CuS空穴传输材料的钙钛矿电池的性能研究[J]. 人工晶体学报, 2023, 52(3): 485-492. |
[4] | 吴忠航, 孙斌, 黄钢, 屈骞, 唐懿文, 孙九爱. 碲锌镉器件技术进展及其在SPECT中的应用[J]. 人工晶体学报, 2023, 52(2): 196-207. |
[5] | 卢辉, 温谦, 王佳棋, 沙思淼, 王康, 孙伟东, 吴建栋, 马金福, 侯春平, 盛之林, 冯伟光. 基于ZnO电子传输层钙钛矿太阳能电池的研究进展[J]. 人工晶体学报, 2023, 52(2): 208-219. |
[6] | 王传坤, 陆成伟, 欧阳雨洁, 张胜军, 郝艳玲. Sn基CH3NH3SnI3钙钛矿太阳能电池性能计算与优化[J]. 人工晶体学报, 2023, 52(11): 2076-2084. |
[7] | 徐亚东. 晶体人生丨陶绪堂:从有机-无机复合材料走进多彩晶体世界[J]. 人工晶体学报, 2022, 51(9-10): 1519-1522. |
[8] | 卢辉, 李彤, 温谦, 沙思淼, 马思敏, 薛晓洋, 王康, 盛之林, 马金福. 水杨酸的添加对全无机锡铅混合钙钛矿太阳能电池的影响[J]. 人工晶体学报, 2022, 51(8): 1387-1395. |
[9] | 张博, 蔺明宇, 孙淑艳, 罗新泽. SiW12、CsPbI3协同提高TiO2纳米管光电转换效率的研究[J]. 人工晶体学报, 2022, 51(6): 1034-1041. |
[10] | 任锦涛, 陈青, 霍宇, 吴治昕, 余春燕, 翟光美. 钝化剂乙酰水杨酸对钙钛矿太阳能电池性能影响的研究[J]. 人工晶体学报, 2022, 51(6): 1042-1050. |
[11] | 宋志成, 杨露, 张春福, 刘大伟, 倪玉凤, 张婷, 魏凯峰. 超薄多晶硅的掺杂、钝化及光伏特性研究[J]. 人工晶体学报, 2022, 51(3): 434-440. |
[12] | 杨志胜, 柯蔚芳, 焦学纬, 余泽南, 朱华. 少铅/无铅钙钛矿太阳能电池研究进展[J]. 人工晶体学报, 2022, 51(3): 551-558. |
[13] | 高嘉庆, 郭永刚, 屈小勇, 吴翔, 张天杰, 张博, 刘洪东. n型IBC太阳电池选择性发射极工艺研究[J]. 人工晶体学报, 2022, 51(11): 1929-1935. |
[14] | 楚树勇, 张正国, 刘海. 碳电极钙钛矿太阳能电池光吸收层厚度对光伏性能的影响研究[J]. 人工晶体学报, 2022, 51(11): 1936-1943. |
[15] | 张道永, 王书荣. 铜锌锡硫硒薄膜太阳电池研究进展[J]. 人工晶体学报, 2021, 50(9): 1796-1809. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||