[1] HE B, FENG M, CHEN X Y, et al. Fabrication of potassium ion decorated 1D/2D g-C3N4/g-C3N4 homojunction enabled by dual-ions synergistic strategy for enhanced photocatalytic activity towards degradation of organic pollutants[J]. Applied Surface Science, 2022, 575: 151695. [2] HU X N, ZHANG Y, WANG B J, et al. Novel g-C3N4/BiOClxI1-x nanosheets with rich oxygen vacancies for enhanced photocatalytic degradation of organic contaminants under visible and simulated solar light[J]. Applied Catalysis B: Environmental, 2019, 256: 117789. [3] SUN Q, SUN Y, ZHOU M Y, et al. A 2D/3D g-C3N4/ZnO heterojunction enhanced visible-light driven photocatalytic activity for sulfonamides degradation[J]. Ceramics International, 2022, 48(5): 7283-7290. [4] VILLABONA-LEAL E G, LÓPEZ-NEIRA J P, PEDRAZA-AVELLA J A, et al. Screening of factors influencing the photocatalytic activity of TiO2∶Ln (Ln=La, Ce, Pr, Nd, Sm, Eu and Gd) in the degradation of dyes[J]. Computational Materials Science, 2015, 107: 48-53. [5] MENG Q S, WANG T, LIU E Z, et al. Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals[J]. Physical Chemistry Chemical Physics, 2013, 15(24): 9549-9561. [6] FISCHER S, GOLDSCHMIDT J C, LÖPER P, et al. Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization[J]. Journal of Applied Physics, 2010, 108(4): 044912. [7] CASTAÑEDA J, MENESES-NAVA M A, BARBOSA-GARCÍA O, et al. The red emission in two and three steps up-conversion process in a doped erbium SiO2-TiO2 sol-gel powder[J]. Journal of Luminescence, 2003, 102/103: 504-509. [8] FIDELUS J D, ZHYDACHEVSKII Y, PASZKOWICZ W, et al. Enhancement of luminescence of nanocrystalline TiO2∶Yb3+ nanopowders due to co-doping with Nd3+ ions[J]. Optical Materials, 2015, 47: 361-365. [9] MAZIERSKI P, MIKOLAJCZYK A, GRZYB T, et al. On the excitation mechanism of visible responsible Er-TiO2 system proved by experimental and theoretical investigations for boosting photocatalytic activity[J]. Applied Surface Science, 2020, 527: 146815. [10] VENDRUSCOLO V, GIORDANO L, CONSTANTINO V R L, et al. Yb3+/Er3+ co-doped Dion-Jacobson niobium layered perovskites as NIR-to-green upconversion materials[J]. New Journal of Chemistry, 2020, 44(24): 10165-10171. [11] 张 格, 杨向飞, 王晓勇, 等. 稀土纳米晶的上转换发光调控研究进展[J].发光学报, 2023, 44(7): 1149-1166. ZHANG G, YANG X F, WANG X Y, et al. Research progress on upconversion emission modulation of rare earth nanocrystals[J]. Chinese Journal of Luminescence, 2023, 44(7): 1149-1166(in Chinese). [12] ZHANG Q Z, YANG F, XU Z H, et al. Are lanthanide-doped upconversion materials good candidates for photocatalysis[J]. Nanoscale Horiz, 2019, 4(3): 579. [13] YANG M Q, GAO M M, HONG M H, et al. Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production[J]. Adv Mater, 2018, 30(47): 1802894. [14] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 238, 37-38. [15] 吴长锋, 秦伟平, 秦冠仕, 等. TiO2∶Mo体系的光子雪崩上转换[J]. 物理学报, 2003(6): 1540-1544. WU C F, QIN W P, QIN G S, et al. Photon avalanche upconversion in TiO2∶Mo[J]. Acta Physica Sinica, 2003(6): 1540-1544. [16] SIMMONS W B, HANSON S L, FALSTER A U. Samarskite-(Yb): a new species of the samarskite group from the Little Patsy pegmatite, Jefferson County, Colorado[J]. The Canadian Mineralogist, 2006, 44(5): 1119-1125. [17] 孙诗书, 张 妍, 刘金瑞, 等. 上转换稀土复合材料在光催化中的应用研究进展[J/OL]. 中国稀土学报: 1-15[2023-09-18]. SUN S S, ZHANG Y, LIU J R, et al. Progress in the application of upconverted rare earth composite materials in photocatalysis[J/OL]. Journal of the Chinese Society of Rare Earths: 1 -15[2023-09-18] (in Chinese). [18] 陈 杰, 王 超, 尹 玉, 等. SiO2@Gd2O3∶Yb3+,Ln3+(Ln=Er, Tm, Ho)核壳微球的制备及上转换发光性能[J]. 复合材料学报, 2023, 40(7): 4072-4081. CHEN J, WANG C, YIN Y, et al. Preparation and upconversion luminescence properties of SiO2@Gd2O3∶Yb3+, Ln3+(Ln=Er, Tm, Ho) core-shell microspheres[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4072-4081 (in Chinese). [19] HUANG J, YE X H, LI W J, et al. Infrared-to-visible upconversion enhanced photothermal catalytic degradation of toluene over Yb3+, Er3+∶CeO2/attapulgite nanocomposite: effect of rare earth doping[J]. Journal of Industrial and Engineering Chemistry, 2022, 116: 504-514. [20] XIN M. Upconversion luminescence of ZnO∶Er, Yb, Li prepared by a hydrothermal method[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(5): 1-6. [21] AHMAD I. Inexpensive and quick photocatalytic activity of rare earth (Er, Yb) co-doped ZnO nanoparticles for degradation of methyl orange dye[J]. Separation and Purification Technology, 2019, 227: 115726. [22] LI X Y, LI W J, LIU X T, et al. The construction of Yb/Er/Pr triple-doped Bi2 WO6 superior photocatalyst and the regulation of superoxide and hydroxyl radicals[J]. Applied Surface Science, 2022, 592: 153311. [23] YAO X T, ZHEN H R, ZHANG D F, et al. Microwave-assisted hydrothermal synthesis of broadband Yb3+/Er3+ co-doped BiOI/Bi2O4 photocatalysts with synergistic effects of upconversion and direct Z-scheme heterojunction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129276. [24] ALEXANDRU E, LUMINITA A. Photocatalytic activity of S-scheme heterostructure for hydrogen production and organic pollutant removal: a mini-review[J]. Nanomaterials, 2021, 11(4): 871. [25] 鲍二蓬, 张硕卿, 邹吉军, 等. 特殊形貌光催化剂的研究进展[J].化学工业与工程, 2021, 38(2): 19-29. BAO E P,ZHANG S Q,ZOU J J, et al. Research progress on special-morphology photocatalysts[J]. Chemical Industry and Engineering, 2021, 38(2): 19-29 (in Chinese). [26] WEI W, GONG H Y, SHENG L, et al. Highly efficient photocatalytic activity and mechanism of novel Er3+ and Tb3+ co-doped BiOBr/g-C3N5 towards sulfamethoxazole degradation[J]. Ceramics International, 2021, 47(17): 24062-24072. [27] ANWER H, PARK J W. Near-infrared to visible photon transition by upconverting NaYF4∶Yb3+, Gd3+, Tm3+@Bi2WO6 core@shell composite for bisphenol A degradation in solarlight [J]. Applied Catalysis B: Environmental, 2019, 243: 438-447. [28] PUSHPENDRA, KUNCHALA R K, KALIA R, et al. Upconversion luminescence properties of NaBi(MoO4)2∶Ln3+, Yb3+(Ln=Er, Ho) nanomaterials synthesized at room temperature[J]. Ceramics International, 2020, 46: 18614-18622. [29] DUO S W, ZHONG C P, ZHANG J J, et al. Preparation of NaYF4∶Gd3+, Yb3+, Tm3+ @TiO2 and NaYF4∶Gd3+, Yb3+, Tm3+ @ TiO2@Au nanocomposites and their upconversion and photocatalytic properties under simulated solar light with or without an UV filter[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(4): 2974-2987. [30] TIAN Q Y, YAO W J, WU W, et al. NIR light-activated upconversion semiconductor photocatalysts[J]. Nanoscale horizons, 2019, 4(1): 10-25. [31] MAVENGERE S, JUNG S C, KIM J S. Effect of coupling indium tin oxide with the TiO2-NaYF4∶(Gd, Si) composite for photocatalytic properties[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(12): 7629-7635. [32] 张 博, 路春晖, 高美雪, 等. 银掺杂三氧化钨复合上转换材料的制备与表征[J]. 化工新型材料, 2021, 49(3): 202-206. ZHANG B, LU C H, GAO M X, et al. Preparation and characterization of Ag-doped WO3 composite upconversion material[J]. New Chemical Materials, 2021, 49(3): 202-206 (in Chinese). [33] XIA J, WANG F L, ZHOU M, et al. Facile synthesis of VS2/CdS/NaYF4∶Yb, Er ternary heterojunctions for the visible-near-infrared-light driven photocatalysis[J]. Journal of Solid State Chemistry, 2023, 317(PA): 123583. [34] 饶 涵, 马永梅, 李思悦. NaYF4∶Yb, Tm@TiO2复合催化剂光催化降解盐酸四环素[J]. 功能材料, 2022, 53(3): 3011-3019. RAO H, MA Y M, LI S Y. Photocatalytic degradation of tetracycline hydrochloride by NaYF4∶Yb, Tm@TiO2 composite catalyst[J]. Journal of Functional Materials, 2022, 53(3): 3011-3019 (in Chinese). [35] JAROSZ D A, O’CALLAGHAN P, KUNCEWICZ J, et al. Enhanced UV light emission by core-shell upconverting particles powering up TiO2 photocatalysis in near-infrared light[J]. Catalysts, 2020, 10(2): 232. [36] CHU R Y, LU J H, LI M C, et al. Pulsed Nd∶YAG laser irradiation injury threshold of chinese retinas[J]. Chinese Medical Journal, 1987(11): 859. [37] 郭玉玮, 刘旭东, 武天风, 等. 稀土上转光剂复合TiO2光催化剂的制备及其催化性能的研究[J]. 稀土, 2020, 41(2): 86-94. GUO Y W, LIU X D, WU T F, et al. Preparation of rare earth light upconversion agent composite TiO2 photocatalyst and the application in photodegradation dye[J]. Chinese Rare Earths, 2020, 41(2): 86-94 (in Chinese). [38] 郭玉玮, 刘旭东, 赵建军, 等. Er∶YAG/MoS2-NiGa2O4复合物的制备及其光催化活性的研究[J]. 稀有金属, 2021, 45(12): 1418-1428. GUO Y W, LIU X D, ZHAO J J, et al. Preparation of Er∶YAG/MoS2-NiGa2O4 composite and photocatalytic activity[J]. Chinese Journal of Rare Metals, 2021, 45(12): 1418-1428 (in Chinese). [39] 赵丽敏, 靳瑞发, 马凤英, 等. Er3+∶V0.01Y2.99Al5N0.01F0.01O11.98/BiPO4/Pt光催化剂的制备及其在降解废水中亚甲基蓝的应用[J]. 分子催化, 2020, 34(3): 201-209. ZHAO L M, JIN R F, MA F Y, et al. The prepartion of Er3+∶V0.01Y2.99Al5N0.01F0.01O11.98/BiPO4/Pt photocatalyst and its application in the photocatalytic degradation of methylene blue in wastewater[J]. Journal of Molecular Catalysis (China), 2020, 34(3): 201-209 (in Chinese). [40] WANG D, WANG X, LIU J Z, et al. Preparation of high proportion of Z-scheme Er3+∶Y3Al5O12@Nb2O5/Pt/In2O3 composite for enhanced visible-light driven photocatalytic hydrogen production[J]. Materials Science and Engineering: B, 2020, 257: 114549. [41] LIU X, WANG X, LI H, et al. Microwave-assisted synthesis of ZnO-Y3Al5O12∶Ce3+ composites with enhanced visible light photocatalysis[J]. Journal of Materials Chemistry, 2012, 22(32): 16293. [42] ZAMMOURI L, ABOULAICH A, CAPOEN B, et al. Synthesis of YAG∶Ce/ZnO core/shell nanoparticles with enhanced UV-visible and visible light photocatalytic activity and application for the antibiotic removal from aqueous media[J]. Journal of Materials Research, 2019, 34(8): 1318-1330. [43] NEHED A, AUBRY M, AUDREY P, et al. Nanostructuration of YAG∶Ce coatings by ZnO nanowires: a smart way to enhance light extraction efficiency[J]. Nanomaterials, 2022, 12(15): 2568. [44] FENG C, TENG F, LIU Z, et al. A newly discovered BiF3 photocatalyst with a high positive valence band[J]. Journal of Molecular Catalysis. A, Chemical, 2015, 401: 35-40. [45] ZHANG C Y, FU Z D, HONG F, et al. Non-metal group doped g-C3N4 combining with BiF3∶Yb3+, Er3+ upconversion nanoparticles for photocatalysis in UV-Vis-NIR region[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: 127180. [46] BOJANA M, JOVANA P, ZORAN R, et al. Hydrothermal synthesis and properties of Yb3+/Tm3+ doped Sr2LaF7 upconversion nanoparticles[J]. Nanomaterials, 2022, 13(1):30-30. [47] LI Y J, ZHANG Y Y, WANG J J, et al. Enhancement of solar-driven photocatalytic activity of oxygen vacancy-rich Bi/BiOBr/Sr2LaF7∶Yb3+, Er3+ composites through synergetic strategy of upconversion function and plasmonic effect[J]. Journal of Environmental Sciences, 2022, 115: 76-87. [48] YANG D, GUO Q, LIAO L, et al. Crystal structure and up-conversion luminescence properties of K3ScF6∶Er 3+, Yb3+cryolite[J]. Journal of Alloys and Compounds, 2020, 848: 156336. [49] YANG D, LIAO L, ZHANG Y, et al. Synthesis and up-conversion luminescence properties of a novel K3ScF6∶Yb3+, Tm3+ material with cryolite structure[J]. Journal of Luminescence, 2020, 224: 117285. [50] 帅朋飞,黄翡菲,郭庆丰,等.K3ScF6∶Tm3+, Yb3+/CdS光催化复合材料的制备及其光催化性能研究[J].人工晶体学报, 2023, 52(8): 1467-1476. SHUAI P F,HUANG F F,GUO Q F,et al. Preparation and photocatalytic properties of K3ScF6∶Tm3+, Yb3+/CdS photocatalytic composites[J]. Journal of Synthetic Crystals, 2023, 52(8): 1467-1476 (in Chinese) |