
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (5): 809-818.DOI: 10.16553/j.cnki.issn1000-985x.2024.0303
贾秀阳1(
), 贾志刚1,2(
), 董海亮1,2, 陈小东1, 高茂林1, 许并社1,2,3
收稿日期:2024-11-29
出版日期:2025-05-15
发布日期:2025-05-28
通信作者:
贾志刚,博士,讲师。E-mail:jiazhigang@tyut.edu.cn作者简介:贾秀阳(1999—),男,山东省人,硕士研究生。E-mail:13583813362@163.com
基金资助:
JIA Xiuyang1(
), JIA Zhigang1,2(
), DONG Hailiang1,2, CHEN Xiaodong1, GAO Maolin1, XU Bingshe1,2,3
Received:2024-11-29
Online:2025-05-15
Published:2025-05-28
摘要: 795 nm垂直腔面发射激光器(VCSEL)作为铷原子钟和量子陀螺仪的激光光源,一般采用单氧化限制结构保证单模输出,但这种结构输出功率较小且功耗较高。本文利用PICS3D软件首先对不同位置单氧化限制层进行模拟分析,结果表明,氧化限制层越靠近有源区,其对载流子的限制能力越强,因此在相同的注入电流条件下器件的输出功率越高。在此基础上设计了靠近有源区对称双氧化限制和四氧化限制结构VCSEL,与传统单氧化限制结构相比,多氧化限制结构VCSEL有源区有较高的电流密度,且输出功率与电光转化效率有较大提高。此外,本文还通过远场、近场分析了氧化限制层数量对器件光学性能影响,发现随着氧化限制层数量的增加,VCSEL高阶模式更多集中在出光孔处且远场发散角增大。本研究对于通过多氧化限制层优化VCSEL性能,平衡输出功率和光学性能具有参考意义。
中图分类号:
贾秀阳, 贾志刚, 董海亮, 陈小东, 高茂林, 许并社. 对称氧化限制结构提高795 nm VCSEL单模功率[J]. 人工晶体学报, 2025, 54(5): 809-818.
JIA Xiuyang, JIA Zhigang, DONG Hailiang, CHEN Xiaodong, GAO Maolin, XU Bingshe. Symmetric Oxide Confinement Structure Improves 795 nm VCSEL Single-Mode Power[J]. Journal of Synthetic Crystals, 2025, 54(5): 809-818.
图2 VCSEL的驻波折射率分布图。(a)单氧化限制结构;(b)对称双氧化限制结构;(c)对称四氧化限制结构
Fig.2 Standing wave refractive index distribution diagrams of VCSEL. (a) Single oxide confinement structure; (b) symmetric double oxide confinement structure; (c) symmetric quadruple oxide confinement structure
图4 不同结构VCSEL的电学性能参数。(a)P-I曲线;(b)多量子阱受激辐射复合速率分布图
Fig.4 Electrical performance parameters of VCSEL with different structures. (a) P-I curves; (b) stimulated radiative recombination rate distribution in multiple quantum wells
图6 不同结构VCSEL的电学性能参数。(a) P-I-V曲线;(b)靠近n侧第一量子阱电流密度径向分布
Fig.6 Electrical performance parameters of VCSEL with different structures. (a) P-I-V curves; (b) radial distribution of current density near the first quantum well on the n-side
图7 不同结构VCSEL的电学性能参数。(a)受激辐射复合速率分布图;(b)PCE-I曲线
Fig.7 Electrical performance parameters of VCSEL with different structures. (a) Distribution of stimulated radiative recombination rate; (b) PCE-I?curves
图8 5 mA注入电流下,三个结构靠近N侧第一量子阱中电子净值分布(a)和空穴净值分布(b)
Fig.8 Net electron distribution (a) and net hole distribution (b) in three structures near the N-space first quantum well at 5 mA injection current
图10 不同结构三个模式径向的分布。(a)单氧化限制结构;(b)对称双氧化限制结构;(c)对称四氧化限制结构
Fig.10 Distribution of the three modes of different structures in radial direction. (a) Single oxide confinement structure; (b) symmetric double oxide confinement structure; (c) symmetric quadruple oxide confinement structure
| Structure | Γ of the three modes/% | ||
|---|---|---|---|
| LP01 | LP11 | LP21 | |
| Single oxide confined | 92.4 | 71.8 | 47.4 |
| Double oxide confined | 94.8 | 80.5 | 63.4 |
| Quadruple oxide confined | 95.9 | 84.7 | 71.5 |
表 1 不同结构VCSEL三个模式Γ值
Table 1 Γ of the three modes or VCSELs with different structures
| Structure | Γ of the three modes/% | ||
|---|---|---|---|
| LP01 | LP11 | LP21 | |
| Single oxide confined | 92.4 | 71.8 | 47.4 |
| Double oxide confined | 94.8 | 80.5 | 63.4 |
| Quadruple oxide confined | 95.9 | 84.7 | 71.5 |
| 1 | KITCHING J, KNAPPE S, LIEW L, et al. Microfabricated atomic clocks[C]// 18th IEEE International Conference on Micro Electro Mechanical Systems, January 30-February 3, 2005, Miami Beach, FL, USA. IEEE, 2005: 1-7. |
| 2 | SERKLAND D K, GEIB K M, PEAKE G M, et al. VCSELs for atomic sensors[C]// Vertical-Cavity Surface-Emitting Lasers XI. San Jose, CA. SPIE, 2007: 648406. |
| 3 | MALEEV N A, BLOKHIN S A, BOBROV M A, et al. Laser source for a compact nuclear magnetic resonance gyroscope[J]. Gyroscopy and Navigation, 2018, 9(3): 177-182. |
| 4 | JUNG C, JÄGER R, GRABHERR M, et al. 4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes[J]. Electronics Letters, 1997, 33(21): 1790. |
| 5 | ZHANG J, NING Y Q, ZENG Y G, et al. Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks[J]. Laser Physics Letters, 2013, 10(4): 045802. |
| 6 | SUN Y R, DONG J R, ZHAO Y M, et al. The fabrication and lasing characteristics of oxide-confined 795 nm VCSELs with close and open isolation trenches[J]. Optical and Quantum Electronics, 2017, 49(11): 361. |
| 7 | ZHOU Y L, JIA Y C, ZHANG X, et al. Large-aperture single-mode 795 nm VCSEL for chip-scale nuclear magnetic resonance gyroscope with an output power of 4.1 mW at 80 ℃[J]. Optics Express, 2022, 30(6): 8991-8999. |
| 8 | XUN M, PAN G Z, ZHAO Z Z, et al. High single fundamental-mode output power from 795 nm VCSELs with a long monolithic cavity[J]. IEEE Electron Device Letters, 2023, 44(7): 1144-1147. |
| 9 | HUFFAKER D L, DEPPE D G, KUMAR K, et al. Native-oxide defined ring contact for low threshold vertical-cavity lasers[J]. Applied Physics Letters, 1994, 65(1): 97-99. |
| 10 | MOSER P, LOTT J A, LARISCH G, et al. Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs[J]. Journal of Lightwave Technology, 2015, 33(4): 825-831. |
| 11 | SHARIZAL A M, LEISHER P O, CHOQUETTE K D, et al. Effect of oxide aperture on the performance of 850nm vertical-cavity surface-emitting lasers[J]. Optik, 2009, 120(3): 121-126. |
| 12 | 聂语葳, 李 伟, 吕家纲, 等. 氧化限制型795 nm垂直腔面发射激光器[J]. 中国激光, 2024, 51(6): 0601004. |
| NIE Y W, LI W, LYU J G, et al. Oxidation-limited 795 nm vertical cavity surface emission laser[J]. Chinese Journal of Lasers, 2024, 51(6): 0601004 (in Chinese). | |
| 13 | ALMUNEAU G, BOSSUYT R, COLLIÈRE P, et al. Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs[J]. Semiconductor Science and Technology, 2008, 23(10): 105021. |
| 14 | FENG Y, LIU G J, YAN C L, et al. A study on the law of oxidation rate in GaAs-based VCSELs[J]. Optik, 2014, 125(18): 5124-5127. |
| 15 | 陈 磊, 罗 妍, 冯 源, 等. 基于VCSEL的湿法氧化工艺的温度依赖性研究[J]. 中国激光, 2020, 47(7): 0701023. |
| CHEN L, LUO Y, FENG Y, et al. Temperature dependence of wet oxidation process based on VCSEL[J]. Chinese Journal of Lasers, 2020, 47(7): 0701023 (in Chinese). | |
| 16 | OU Y, GUSTAVSSON J S, WESTBERGH P, et al. Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs[J]. IEEE Photonics Technology Letters, 2009, 21(24): 1840-1842. |
| 17 | HAGLUND E, WESTBERGH P, GUSTAVSSON J S, et al. High-speed VCSELs with strong confinement of optical fields and carriers[J]. Journal of Lightwave Technology, 2016, 34(2): 269-277. |
| 18 | LIU M, WANG C Y, FENG M, et al. 50 Gb/s error-free data transmission of 850 nm oxide-confined VCSELs[C]// 2016 Optical Fiber Communications Conference and Exhibition (OFC). March 20-24, 2016, Anaheim, CA, USA. IEEE, 2016: 1-3. |
| 19 | CHENG C H, SHEN C C, KAO H Y, et al. 850/940-nm VCSEL for optical communication and 3D sensing[J]. Opto-Electronic Advances, 2018, 1(3): 180005. |
| 20 | SAMAL N, JOHNSON S R, DING D, et al. High-power single-mode vertical-cavity surface-emitting lasers[J]. Applied Physics Letters, 2005, 87(16): 161108. |
| 21 | CHANG K S, SONG Y M, LEE Y T. Stable single-mode operation of VCSELs with a mode selective aperture[J]. Applied Physics B, 2007, 89(2): 231-234. |
| 22 | YAZDANYPOOR M, GHOLAMI A. Optimizing optical output power of single-mode VCSELs using multiple oxide layers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701708. |
| 23 | YAZDANYPOOR M, EMAMI F. High power single mode multi-oxide layer VCSEL with optimized thicknesses and aperture sizes of oxide layers[J]. Journal of the Optical Society of Korea, 2014, 18(2): 167-173. |
| 24 | 李海军, 钟景昌, 郝永琴, 等. 湿法氧化工艺对VCSEL器件性能的影响[J]. 中国电子科学研究院学报, 2006, 1(4): 369-372. |
| LI H J, ZHONG J C, HAO Y Q, et al. The influence of wet oxidation for VCSELs' charactors[J]. Journal of China Academy of Electronics and Information Technology, 2006, 1(4): 369-372 (in Chinese). | |
| 25 | CHUANG S L. Physics of optoelectronic devices[M]. 3rd ed. Hoboken, New Jersey: John Wiley & Sons, 2005: 28-50. |
| 26 | PASSARO V M N, MAGNO F, DE LEONARDIS F. Optimization of Bragg reflectors in AlGaAs/GaAs VCSELs[J]. Laser Physics Letters, 2005, 2(5): 239-246. |
| 27 | HADLEY G R, LEAR K L, WARREN M E, et al. Comprehensive numerical modeling of vertical-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 1996, 32(4): 607-616. |
| 28 | PIPREK J. Semiconductor optoelectronic devices: introduction to physics and simulation[M]. Amsterdam: Elsevier, 2003. |
| 29 | WACHUTKA G K. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1990, 9(11): 1141-1149. |
| 30 | GAO Y B, ZHANG Y H, CHU C S, et al. Effectively confining the lateral current within the aperture for GaN based VCSELs by using a reverse biased NP junction[J]. IEEE Journal of Quantum Electronics, 2020, 56(4): 2400507. |
| 31 | BOND A E, DAPKUS P D, O’BRIEN J D. Aperture placement effects in oxide-defined vertical-cavity surface-emitting lasers[J]. IEEE Photonics Technology Letters, 1998, 10(10): 1362-1364. |
| 32 | PAN G Z, XUN M, ZHAO Z Z, et al. High slope efficiency bipolar cascade 905 nm vertical cavity surface emitting laser[J]. IEEE Electron Device Letters, 2021, 42(9): 1342-1345. |
| 33 | 庄顺连. 光子器件物理[M]. 2版. 北京: 电子工业出版社, 2013: 30-31. |
| ZHUANG S L. Photonic device physics[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2013: 30-31 (in Chinese). | |
| 34 | WANG G, YANG Q. Optimization of the operating point of a vertical-cavity surface-emitting laser[J]. IEEE Journal of Quantum Electronics, 1995, 32: 1441-1449. |
| 35 | XIAO Y, WANG J, LIU H, et al. Multi-junction cascaded vertical-cavity surface-emitting laser with a high power conversion efficiency of 74%[J]. Light, Science & Applications, 2024, 13(1): 60. |
| 36 | 杨 浩, 郭 霞, 关宝璐, 等. 注入电流对垂直腔面发射激光器横模特性的影响[J]. 物理学报, 2008, 57(5): 2959-2965. |
| YANG H, GUO X, GUAN B L, et al. The influence of injection current on transverse mode characteristics of vertical-cavity surface-emitting lasers[J]. Acta Physica Sinica, 2008, 57(5): 2959-2965 (in Chinese). |
| [1] | 高嘉庆, 屈小勇, 吴翔, 郭永刚, 王永冈, 汪梁, 谭新, 杨鑫泽. p型TOPCon结构的隧穿氧化和钝化工艺研究[J]. 人工晶体学报, 2025, 54(1): 133-138. |
| [2] | 赵青松, 牛晓东, 顾小英, 狄聚青. 大尺寸超高纯锗单晶的生长和性能研究[J]. 人工晶体学报, 2025, 54(1): 34-39. |
| [3] | 祝震宇, 贾志刚, 董海亮, 许并社. 微纳级GaN基VCSEL中周期反射结构与电子阻挡层的设置作用分析[J]. 人工晶体学报, 2024, 53(8): 1337-1343. |
| [4] | 顾小英, 赵青松, 牛晓东, 狄聚青, 张家瑛, 肖溢, 罗恺. 13N超高纯锗单晶的制备与性能研究[J]. 人工晶体学报, 2024, 53(3): 497-502. |
| [5] | 张博, 宋志成, 倪玉凤, 魏凯峰. 全TOPCon电池正面多晶硅层硼掺杂工艺[J]. 人工晶体学报, 2024, 53(2): 329-335. |
| [6] | 李佳, 袁仲纯, 姚梦琴, 刘飞, 马俊. 多晶型MnO2-Ru复合催化剂的制备及其电催化水解析氧性能的研究[J]. 人工晶体学报, 2024, 53(2): 336-343. |
| [7] | 詹廷吾, 贾伟, 董海亮, 李天保, 贾志刚, 许并社. 多孔GaN薄膜的制备与光学性能研究[J]. 人工晶体学报, 2023, 52(9): 1599-1608. |
| [8] | 赵飞云, 任翱博, 巫江. 高功率多结905 nm垂直腔面发射激光器[J]. 人工晶体学报, 2023, 52(5): 818-824. |
| [9] | 杨松, 何颖子, 王建卫, 张敏, 王旭. 锌掺杂对铁酸铋薄膜结构及多铁性能的影响[J]. 人工晶体学报, 2023, 52(4): 621-628. |
| [10] | 杨爽, 宋贵宏, 陈雨, 冉丽阳, 胡方, 吴玉胜, 尤俊华. Mg3Bi2/Mg2Sn纳米复合膜的微结构及热电性能[J]. 人工晶体学报, 2023, 52(3): 467-475. |
| [11] | 何东, 徐文博, 胡文鹏, 程大伟, 童靓. 水基溶胶-凝胶沉积法制备YBCO薄膜[J]. 人工晶体学报, 2021, 50(9): 1688-1693. |
| [12] | 王欣月, 张兆诚, 黎智杰, 何婉婷, 温锦秀, 罗坚义, 唐秀凤, 王忆. 基底加热温度对ITO薄膜的性能影响研究[J]. 人工晶体学报, 2021, 50(5): 858-865. |
| [13] | 霍海波, 郑亚娟, 麻华丽, 董子华, 李倩倩, 李明玉, 丁佩, 曾凡光. 基于单体石墨纤维的场发射特性研究[J]. 人工晶体学报, 2021, 50(5): 866-870. |
| [14] | 刘振华, 樊龙, 符亚军, 王进, 曹林洪, 吴卫东. 同质外延生长ZnO单晶结构及光电性能的研究[J]. 人工晶体学报, 2021, 50(4): 768-775. |
| [15] | 马英俊;林泉;于洪国;马会超;许兴;李万朋;许所成. 红外LED用掺硅HB-GaAs单晶纵向载流子浓度分布研究[J]. 人工晶体学报, 2020, 49(8): 1555-1561. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS