1 |
EMANÚEL' N M, GUMANOV L L, KONOVALOVA N P, et al. Experimental determination of the antileukemic effect of 1, 2-bis-diazoacetylethane[J]. Doklady Akademii Nauk SSSR, 1968, 183(3): 724-726.
|
2 |
VERGADOS J D, EJIRI H, SIMKOVIC F. Theory of neutrinoless double-beta decay[J]. Reports on Progress in Physics Physical Society, 2012, 75(10): 106301.
|
3 |
COLLABORATION C U O R E. Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE[J]. Nature, 2022, 604(7904): 53-58.
|
4 |
KANG S K, KIM C S. Majorana neutrino masses and neutrino oscillations[J]. Physical Review D, 2001, 63(11): 113010.
|
5 |
BARABASH A S, CHERNYAK D M, DANEVICH F A, et al. Enriched Zn100MoO4 scintillating bolometers to search for 0ν2β decay of 100Mo with the LUMINEU experiment[J]. The European Physical Journal C, 2014, 74(10): 3133.
|
6 |
CAMPANI ON BEHALF OF THE CUORE COLLABORATION A. New results on 0νββ decay from the CUORE experiment[J]. Letters in High Energy Physics, 2024: 2240014.
|
7 |
AZZOLINI O, BEEMAN J W, BELLINI F, et al. Search for majoron-like particles with CUPID-0[J]. Physical Review D, 2023, 107(3): 032006.
|
8 |
ARMENGAUD E, AUGIER C, BARABASH A S, et al. New limit for neutrinoless double-beta decay of {100} Mo from the CUPID-Mo experiment[J]. Physical Review Letters, 2021, 126(18): 181802.
|
9 |
ZHANG X, LIN J, MIKHAILIK V B, et al. Studies of scintillation properties of CaMoO4 at millikelvin temperatures[J]. Applied Physics Letters, 2015, 106(24): 241904.
|
10 |
BARINOVA O P, DANEVICH F A, DEGODA V Y, et al. First test of Li2MoO4 crystal as a cryogenic scintillating bolometer[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 613(1): 54-57.
|
11 |
BEKKER T B, CORON N, DANEVICH F A, et al. Aboveground test of an advanced Li2MoO4 scintillating bolometer to search for neutrinoless double beta decay of 100Mo[J]. Astroparticle Physics, 2016, 72: 38-45.
|
12 |
VELÁZQUEZ M, VEBER P, MOUTATOUIA M, et al. Exploratory growth in the Li2MoO4-MoO3 system for the next crystal generation of heat-scintillation cryogenic bolometers[J]. Solid State Sciences, 2017, 65: 41-51.
|
13 |
SON J K, CHOE J S, GILEVA O, et al. Growth and development of pure Li2MoO4 crystals for rare event experiment at CUP[J]. Journal of Instrumentation, 2020, 15(7): C07035.
|
14 |
CHENG J P, KANG K J, LI J M, et al. The China Jinping underground laboratory and its early science[J]. Annual Review of Nuclear and Particle Science, 2017, 67: 231-251.
|
15 |
CHEN X, CHEN P, JIANG L W, et al. Luminescence properties of large-size Li2MoO4 single crystal grown by Czochralski method[J]. Journal of Crystal Growth, 2021, 558: 126022.
|
16 |
CHEN P, JIANG L W, CHEN Y P, et al. Bridgman growth and luminescence properties of Li2MoO4 single crystal[J]. Materials Letters, 2018, 215: 225-228.
|
17 |
BEEMAN J W, BELLINI F, CAPELLI S, et al. ZnMoO4: a promising bolometer for neutrinoless double beta decay searches[J]. Astroparticle Physics, 2012, 35(12): 813-820.
|
18 |
GRIGORIEVA V D, SHLEGEL V N, BOROVLEV Y A, et al. Li2 100deplMoO4 crystals grown by low-thermal-gradient Czochralski technique[J]. Journal of Crystal Growth, 2020, 552: 125913.
|
19 |
GILEVA O, ARYAL P, KARKI S, et al. Investigation of the molybdenum oxide purification for the AMoRE experiment[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314(3): 1695-1700.
|
20 |
SPASSKY D A, NAGIRNYI V, SAVON A E, et al. Low temperature luminescence and charge carrier trapping in a cryogenic scintillator Li2MoO4 [J]. Journal of Luminescence, 2015, 166: 195-202.
|
21 |
ARMENGAUD E, ARNAUD Q, AUGIER C, et al. LUMINEU: a search for neutrinoless double beta decay based on ZnMoO4 scintillating bolometers[J]. Journal of Physics: Conference Series, 2016, 718. DOI:10.1088/1742-6596/718/6/062008 .
|
22 |
ARMATOL A, ARMENGAUD E, ARMSTRONG W, et al. Characterization of cubic Li2 100MoO4 crystals for the CUPID experiment[J]. The European Physical Journal C, 2021, 81(2): 104.
|
23 |
LIU T Y, CHEN J, YAN F N. Optical polarized properties related to the oxygen vacancy in the CaMoO4 crystal[J]. Journal of Luminescence, 2009, 129(2): 101-104.
|
24 |
ITOH M. Luminescence study of self-trapped excitons in CdMoO4 [J]. Journal of Luminescence, 2012, 132(3): 645-651.
|
25 |
SPASSKY D A, VASIL’EV A N, KAMENSKIKH I A, et al. Electronic structure and luminescence mechanisms in ZnMoO4 crystals[J]. Journal of Physics Condensed Matter, 2011, 23(36): 365501.
|
26 |
PANDEY I R, KIM H J, KIM Y D. Growth and characterization of Na2Mo2O7 crystal scintillators for rare event searches[J]. Journal of Crystal Growth, 2017, 480: 62-66.
|
27 |
MYKHAYLYK V B, KRAUS H, SALIBA M. Bright and fast scintillation of organolead perovskite MAPbBr3 at low temperatures[J]. Materials Horizons, 2019, 6(8): 1740-1747.
|
28 |
AHMED N, KRAUS H, KIM H J, et al. Characterisation of tungstate and molybdate crystals ABO4 (A=Ca, Sr, Zn, Cd; B=W, Mo) for luminescence lifetime cryothermometry[J]. Materialia, 2018, 4: 287-296.
|
29 |
BABIN V, BOHACEK P, BENDER E, et al. Decay kinetics of the green emission in tungstates and molybdates[J]. Radiation Measurements, 2004, 38(4/5/6): 533-537.
|
30 |
MIKHAILIK V, KRAUS H, HENRY S, et al. Scintillation studies of CaWO4 in the millikelvin temperature range[J]. Physical Review B, 2007, 75(18): 184308.
|