
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (8): 1441-1453.DOI: 10.16553/j.cnki.issn1000-985x.2025.0035
秦纪龙1(
), 李向远2, 张璐璐1,3, 刘建新1, 李瑞1,2(
)
收稿日期:2025-02-24
出版日期:2025-08-20
发布日期:2025-09-01
通信作者:
李 瑞,博士,副教授。E-mail:作者简介:秦纪龙(2000—),男,山西省人,硕士研究生。E-mail:2282181616@qq.com
基金资助:
QIN Jilong1(
), LI Xiangyuan2, ZHANG Lulu1,3, LIU Jianxin1, LI Rui1,2(
)
Received:2025-02-24
Online:2025-08-20
Published:2025-09-01
摘要: 甲烷氧化制甲醇的关键挑战在于催化剂对CH4分子的高效活化。非化学计量比WO3-x (0<x<3)因氧空位的可控性,兼具结构稳定性与导电性优势,成为新型催化材料的研究热点。本文采用密度泛函理论方法,系统研究了六种不同WO3-x 催化甲烷氧化制甲醇的性能,并从物质结构、表面位点、甲烷氧化性能和电子性质等多个角度解析了过程机制。结果表明,WO2.72催化剂的WO端面由于较低的功函数、W 5d轨道与CH4分子间的杂化作用,以及W原子态较强的供电子能力等因素,拥有较低的CH4吸附自由能(-0.62 eV)和解离自由能(-0.07 eV),从而表现出较强的甲烷吸附和活化能力。本文研究为探索WO3-x 催化剂在甲烷氧化反应中的应用提供了理论指导。
中图分类号:
秦纪龙, 李向远, 张璐璐, 刘建新, 李瑞. 非化学计量比氧化钨(WO3-x)催化甲烷氧化制甲醇反应的第一性原理研究[J]. 人工晶体学报, 2025, 54(8): 1441-1453.
QIN Jilong, LI Xiangyuan, ZHANG Lulu, LIU Jianxin, LI Rui. First-Principles Study on Oxidation of Methane to Methanol Catalyzed by Non-Stoichiometric Tungsten Oxide (WO3-x)[J]. Journal of Synthetic Crystals, 2025, 54(8): 1441-1453.
| Surface energy, γ/(eV·Å-2) | WO3 | WO2.9 | WO2.72 | WO2.67 | WO2.63 | WO2 |
|---|---|---|---|---|---|---|
| WO term | 0.030 4 | 0.045 7 | 0.060 2 | 0.077 2 | 0.079 8 | 0.080 9 |
| O term | 0.084 8 | 0.102 3 | 0.112 5 | 0.081 2 | 0.082 7 | 0.123 9 |
表1 WO3-x 两种端面表面能参数
Table 1 Surface energy parameters for two terms of WO3-x
| Surface energy, γ/(eV·Å-2) | WO3 | WO2.9 | WO2.72 | WO2.67 | WO2.63 | WO2 |
|---|---|---|---|---|---|---|
| WO term | 0.030 4 | 0.045 7 | 0.060 2 | 0.077 2 | 0.079 8 | 0.080 9 |
| O term | 0.084 8 | 0.102 3 | 0.112 5 | 0.081 2 | 0.082 7 | 0.123 9 |
| Parameter | WO3 | WO2.9 | WO2.72 | WO2.67 | WO2.63 | WO2 |
|---|---|---|---|---|---|---|
| Eads/eV | -0.460 0 | -0.211 0 | -1.001 0 | -0.461 0 | -0.515 0 | -0.348 0 |
| d(C—H)/Å | 1.095 8 | 1.096 1 | 1.101 2 | 1.098 6 | 1.097 7 | 1.101 3 |
| d/Å | 2.652 0 | 2.787 0 | 2.134 3 | 2.664 0 | 2.592 0 | 2.750 3 |
表2 CH4在WO3-x 表面的吸附能和结构参数
Table 2 Adsorption energy and structural parameters of CH4 on the WO3-x surface
| Parameter | WO3 | WO2.9 | WO2.72 | WO2.67 | WO2.63 | WO2 |
|---|---|---|---|---|---|---|
| Eads/eV | -0.460 0 | -0.211 0 | -1.001 0 | -0.461 0 | -0.515 0 | -0.348 0 |
| d(C—H)/Å | 1.095 8 | 1.096 1 | 1.101 2 | 1.098 6 | 1.097 7 | 1.101 3 |
| d/Å | 2.652 0 | 2.787 0 | 2.134 3 | 2.664 0 | 2.592 0 | 2.750 3 |
图7 WO3-x 上甲烷吸附自由能和εd的变化(a),以及WO2.72、CH4/WO2.72(b)和WO2、CH4/WO2(c)的ELF图
Fig.7 Change of the adsorption free energy of methane and the εd on WO3-x (a), and ELF plots of WO2.72, CH4/WO2.72 (b) and WO2, CH4/WO2 (c)
图9 甲烷吸附在催化剂表面的电荷密度差分(CDD的等值面为0.000 15 eV/?3,黄色和蓝色分别代表电子积累和电子损耗区)和Bader电荷
Fig.9 Charge density difference and Bader charge of methane adsorbed on the catalyst surface (the equivalent surface of CDD is 0.000 15 eV/?3, yellow and blue colors represent the electron accumulation and electron loss regions, respectively)
| [1] |
程春晖, 明淑君, 庞 磊, 等. 基于煤层气甲烷富集的固体多孔材料研究进展[J]. 化工进展, 2024, 43(11): 6215-6232.
DOI |
|
CHENG C H, MING S J, PANG L, et al. Developments in solid porous materials for methane enrichment in coalbed gas[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6215-6232 (in Chinese).
DOI |
|
| [2] | 张志刚, 霍春秀. 煤矿区煤层气利用技术研究进展[J]. 矿业安全与环保, 2022, 49(4): 59-64. |
| ZHANG Z G, HUO C X. Research progress of CBM utilization technology in mining areas[J]. Mining Safety & Environmental Protection, 2022, 49(4): 59-64 (in Chinese). | |
| [3] | 郭昊乾, 李小亮, 白洪灏, 等. 复合床低浓度煤层气变压吸附分离性能[J]. 洁净煤技术, 2023, 29(增刊2): 574-579. |
| GUO H Q, LI X L, BAI H H, et al. Pressure swing adsorption separation performance of low concentration coalbed methane in composite bed[J]. Clean Coal Technology, 2023, 29(supplyment 2): 574-579 (in Chinese). | |
| [4] | LI X Y, XIE J J, RAO H, et al. Platinum- and CuO x -decorated TiO2 photocatalyst for oxidative coupling of methane to C2 hydrocarbons in a flow reactor[J]. Angewandte Chemie International Edition, 2020, 59(44): 19702-19707. |
| [5] | WU X Y, ZENG Y, LIU H C, et al. Noble-metal-free dye-sensitized selective oxidation of methane to methanol with green light (550 nm)[J]. Nano Research, 2021, 14(12): 4584-4590. |
| [6] | ZHU S, LI X, PAN Z, et al. Efficient photooxidation of methane to liquid oxygenates over ZnO nanosheets at atmospheric pressure and near room temperature[J]. Nano Letters, 2021, 21(9): 4122-4128. |
| [7] | SONG H, MENG X G, WANG S Y, et al. Selective photo-oxidation of methane to methanol with oxygen over dual-cocatalyst-modified titanium dioxide[J]. ACS catalysis, 2020, 10(23): 14318-14326.. |
| [8] | SONG H, MENG X G, WANG S Y, et al. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water[J]. Journal of the American Chemical Society, 2019, 141(51): 20507-20515. |
| [9] | SHI S L, SUN Z X, BAO C Y, et al. The special route toward conversion of methane to methanol on a fluffy metal-free carbon nitride photocatalyst in the presence of H2O2[J]. International Journal of Energy Research, 2020, 44(4): 2740-2753. |
| [10] | ZAKARIA Z, KAMARUDIN S K. Direct conversion technologies of methane to methanol: an overview[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 250-261. |
| [11] | PAIK T, CARGNELLO M, GORDON T R, et al. Photocatalytic hydrogen evolution from substoichiometric colloidal WO3- x nanowires[J]. ACS Energy Letters, 2018, 3(8): 1904-1910. |
| [12] | YANG J, CHEN P Y, DAI J, et al. Solar-energy-driven conversion of oxygen-bearing low-concentration coal mine methane into methanol on full-spectrum-responsive WO3- x catalysts[J]. Energy Conversion and Management, 2021, 247: 114767. |
| [13] |
LUO L H, LUO J, LI H L, et al. Water enables mild oxidation of methane to methanol on gold single-atom catalysts[J]. Nature Communications, 2021, 12(1): 1218.
DOI PMID |
| [14] | AN B, LI Z, WANG Z, et al. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site[J]. Nature Materials, 2022, 21(8): 932-938. |
| [15] |
KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1): 558-561.
DOI PMID |
| [16] |
BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979.
DOI PMID |
| [17] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
DOI PMID |
| [18] | PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1992, 46(11): 6671-6687. |
| [19] | GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104. |
| [20] | DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study[J]. Physical Review B, 1998, 57(3): 1505-1509. |
| [21] | HAJIAHMADI Z, AZAR Y T. Computational study of h-WO3 surfaces as a semiconductor in water-splitting application[J]. Surfaces and Interfaces, 2022, 28: 101695. |
| [22] | HURTADO-AULAR O, VIDAL A B, SIERRAALTA A, et al. Periodic DFT study of water adsorption on m-WO3(001), m-WO3(100), h-WO3(001) and h-WO3(100). Role of hydroxyl groups on the stability of polar hexagonal surfaces[J]. Surface Science, 2020, 694: 121558. |
| [23] | AZAR Y T, PAYAMI M. First-principles calculation of electronic energy level alignment at electrochemical interfaces[J]. Applied Surface Science, 2017, 412: 335-341. |
| [24] | JAIN A, ONG S P, HAUTIER G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation[J]. APL Materials, 2013, 1(1): 011002. |
| [25] | MOMMA K, IZUMI F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data[J]. Journal of Applied Crystallography, 2011, 44(6): 1272-1276. |
| [26] | WANG V, XU N, LIU J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033. |
| [27] | NELSON R, ERTURAL C, GEORGE J, et al. LOBSTER: local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory[J]. Journal of Computational Chemistry, 2020, 41(21): 1931-1940. |
| [28] | SHETTY M, BUESSER B, ROMÁN-LESHKOV Y, et al. Computational investigation on hydrodeoxygenation (HDO) of acetone to propylene on α-MoO3 (010) surface[J]. The Journal of Physical Chemistry C, 2017, 121(33): 17848-17855. |
| [29] | JIANG P G, WANG Z B, YAN Y B, et al. First-principles study of absorption mechanism of hydrogen on W20O58 (010) surface[J]. Acta Physica Sinica, 2017, 66(24): 246801. |
| [30] |
LI Q, RELLÁN-PIÑEIRO M, ALMORA-BARRIOS N, et al. Shape control in concave metal nanoparticles by etching[J]. Nanoscale, 2017, 9(35): 13089-13094.
DOI PMID |
| [31] | KAHN A. Fermi level, work function and vacuum level[J]. Materials Horizons, 2016, 3(1): 7-10. |
| [32] | LIU X M, WEI Z P, LIU J L, et al. Oxidization of Al0.5Ga0.5As(001) surface: the electronic properties[J]. Applied Surface Science, 2018, 436: 460-466. |
| [33] | FANG Z, SHANG M H, HOU X M, et al. Bandgap alignment of α-CsPbI3 perovskites with synergistically enhanced stability and optical performance via B-site minor doping[J]. Nano Energy, 2019, 61: 389-396. |
| [34] | ZHAI R C, DENG C B, DU S L, et al. A DFT study of CH4 adsorption on OMS-2 (110) surface with different types of oxygen vacancies[J]. Chemical Physics, 2023, 564: 111708. |
| [35] | ZHENG K, WU Y, ZHU J C, et al. Room-temperature photooxidation of CH4 to CH3OH with nearly 100% selectivity over hetero-ZnO/Fe2O3 porous nanosheets[J]. Journal of the American Chemical Society, 2022, 144(27): 12357-12366. |
| [36] | ZENG Y, TANG Z Y, WU X Y, et al. Photocatalytic oxidation of methane to methanol by tungsten trioxide-supported atomic gold at room temperature[J]. Applied Catalysis B: Environmental, 2022, 306: 120919. |
| [37] | HENKELMAN G, ARNALDSSON A, JÓNSSON H. A fast and robust algorithm for Bader decomposition of charge density[J]. Computational Materials Science, 2006, 36(3): 354-360. |
| [38] |
LIU X, JIAO Y, ZHENG Y, et al. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts[J]. Journal of the American Chemical Society, 2019, 141(24): 9664-9672.
DOI PMID |
| [39] | HE M C, ZHAO J. Methane adsorption on graphite(0001) films: a first-principles study[J]. Chinese Physics B, 2013, 22(1): 016802. |
| [40] | LIN L, HUANG J T, YU W Y, et al. A periodic DFT study on adsorption of small molecules (CH4, CO, H2O, H2S, NH3) on the WO3 (001) surface-supported Au[J]. Communications in Theoretical Physics, 2020, 72(3): 035501. |
| [41] |
CHENG L, CHEN X N, HU P, et al. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites[J]. Chinese Journal of Catalysis, 2023, 51: 135-144.
DOI |
| [1] | 王淳, 王坤, 宋相满, 任林, 张浩. 共掺杂β-Ga2O3导电性质第一性原理研究[J]. 人工晶体学报, 2025, 54(8): 1426-1432. |
| [2] | 莫秋燕, 吴家隐, 荆涛. Pt修饰AlN单层对C2H6和C6H6吸附和气敏特性的第一性原理研究[J]. 人工晶体学报, 2025, 54(6): 1050-1060. |
| [3] | 刘劲松, 沈露, 任龙军, 黄希忠. 通过缺陷和应变工程控制Janus MoSSe的析氢反应[J]. 人工晶体学报, 2025, 54(6): 1034-1041. |
| [4] | 任龙军, 柴什虎, 王付远, 姜萍. 具有超高载流子迁移率单层C2B6的预测[J]. 人工晶体学报, 2025, 54(5): 850-856. |
| [5] | 崔健, 和志豪, 丁家福, 王云杰, 万俯宏, 李佳郡, 苏欣. 含d10电子构型钨酸盐结构与性能关系的第一性原理研究[J]. 人工晶体学报, 2025, 54(5): 841-849. |
| [6] | 解忧, 肖潇飒, 姜宁宁, 张涛. 二维BC6N/BN横向异质结的电学输运性质研究[J]. 人工晶体学报, 2025, 54(5): 825-831. |
| [7] | 闵月淇, 谢文钦, 谢亮, 安康. Pd掺杂调控CsPbX3(X=Cl,Br,I)光电性能研究[J]. 人工晶体学报, 2025, 54(4): 605-616. |
| [8] | 张家琪, 林雪玲, 田文虎, 马文杰, 张秀, 马小伟, 朱巧萍, 郝睿, 潘凤春. 应变对Si掺杂A-TiO2光学性质影响的第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 617-628. |
| [9] | 李琪, 付博, 余博文, 赵昊, 林娜, 贾志泰, 赵显, 陶绪堂. Al/In掺杂与β-Ga2O3(100)面孪晶相互作用的第一性原理研究[J]. 人工晶体学报, 2025, 54(3): 371-377. |
| [10] | 郭满意, 吴佳兴, 杨帆, 王超, 王艳杰, 迟耀丹, 杨小天. ε-Ga2O3晶体及其本征缺陷的第一性原理研究[J]. 人工晶体学报, 2025, 54(2): 212-218. |
| [11] | 莫秋燕, 张颂, 荆涛, 吴家隐. SO2和CO在ReS2表面吸附的第一性原理研究[J]. 人工晶体学报, 2025, 54(1): 107-114. |
| [12] | 张宁宁, 鱼海涛, 刘艳艳, 薛丹. 4d过渡金属掺杂单层WS2的电子结构和光学性质研究[J]. 人工晶体学报, 2025, 54(1): 77-84. |
| [13] | 王云杰, 和志豪, 丁家福, 苏欣. X2(PO4)2(X=Ba、Pb)和XPO4(X=Y、Bi)中阳离子对结构框架影响及双折射率来源研究[J]. 人工晶体学报, 2025, 54(1): 85-94. |
| [14] | 丁家福, 和志豪, 王云杰, 苏欣. 通过硫代调控Ga、In、Tl磷酸盐光学性质的第一性原理研究[J]. 人工晶体学报, 2025, 54(1): 95-106. |
| [15] | 郑权, 刘学超, 王浩, 朱新峰, 潘秀红, 陈锟, 邓伟杰, 汤美波, 徐浩, 吴鸿辉, 金敏. 铝掺杂对硒化铟晶体结构与性能的影响[J]. 人工晶体学报, 2024, 53(9): 1528-1535. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS