欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (8): 1441-1453.DOI: 10.16553/j.cnki.issn1000-985x.2025.0035

• 研究论文 • 上一篇    下一篇

非化学计量比氧化钨(WO3-x)催化甲烷氧化制甲醇反应的第一性原理研究

秦纪龙1(), 李向远2, 张璐璐1,3, 刘建新1, 李瑞1,2()   

  1. 1.太原理工大学环境与生态学院,太原 030024
    2.天脊煤化工集团股份有限公司,长治 047500
    3.太原学院材料与化学工程系,太原 030032
  • 收稿日期:2025-02-24 出版日期:2025-08-20 发布日期:2025-09-01
  • 通信作者: 李 瑞,博士,副教授。E-mail:lirui13233699182@163.com
  • 作者简介:秦纪龙(2000—),男,山西省人,硕士研究生。E-mail:2282181616@qq.com
  • 基金资助:
    国家自然科学基金面上项目(22478273);山西省中央引导地方科技发展资金项目(YDZJSX20231A014);山西省科技合作交流专项项目(202304041101040)

First-Principles Study on Oxidation of Methane to Methanol Catalyzed by Non-Stoichiometric Tungsten Oxide (WO3-x

QIN Jilong1(), LI Xiangyuan2, ZHANG Lulu1,3, LIU Jianxin1, LI Rui1,2()   

  1. 1.College of Environmental and Ecology,Taiyuan University of Technology,Taiyuan 030024,China
    2.Tianji Coal Chemical Industry Group Co. ,Ltd. ,Changzhi 047500,China
    3.Department of Materials and Chemical Engineering,Taiyuan University,Taiyuan 030032,China
  • Received:2025-02-24 Online:2025-08-20 Published:2025-09-01

摘要: 甲烷氧化制甲醇的关键挑战在于催化剂对CH4分子的高效活化。非化学计量比WO3-x (0<x<3)因氧空位的可控性,兼具结构稳定性与导电性优势,成为新型催化材料的研究热点。本文采用密度泛函理论方法,系统研究了六种不同WO3-x 催化甲烷氧化制甲醇的性能,并从物质结构、表面位点、甲烷氧化性能和电子性质等多个角度解析了过程机制。结果表明,WO2.72催化剂的WO端面由于较低的功函数、W 5d轨道与CH4分子间的杂化作用,以及W原子态较强的供电子能力等因素,拥有较低的CH4吸附自由能(-0.62 eV)和解离自由能(-0.07 eV),从而表现出较强的甲烷吸附和活化能力。本文研究为探索WO3-x 催化剂在甲烷氧化反应中的应用提供了理论指导。

关键词: 甲烷; 光催化; WO3-x; 第一性原理; 密度泛函理论

Abstract: The key challenge in the oxidation of methane to methanol is attributed to the efficient activation of CH4 by catalysts. Non-stoichiometric WO3-x (0<x<3), recognized for its controllable oxygen vacancies along with structural stability and conductive advantages, has emerged as a research hotspot in novel catalytic materials. In this study, density functional theory (DFT) methods were employed to systematically investigate the catalytic performance of six distinct WO3-x materials for oxidation of methane to methanol. The mechanisms were elucidated through comprehensive analyses of material structures, surface active sites, methane oxidation behaviors and electronic properties. The results reveal that the WO-terminated surface of the WO2.72 catalyst demonstrates enhanced methane adsorption and activation capabilities, which are ascribed to its lower work function, hybridization between W 5d orbitals and CH4 molecules, and the strong electron-donating capacity of W atomic states. Specifically, this surface exhibits a favorable CH4 adsorption free energy (-0.62 eV) and dissociation free energy (-0.07 eV). These findings provide theoretical guidance for exploring the application of WO3-x catalysts in methane oxidation reactions.

Key words: methane; photocatalysis; WO3-x; first-principle; density functional theory

中图分类号: