欢迎访问《人工晶体学报》官方网站,今天是 2025年8月13日 星期三 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (3): 371-377.DOI: 10.16553/j.cnki.issn1000-985x.2024.0323

• 晶体生长、掺杂和缺陷 • 上一篇    下一篇

Al/In掺杂与β-Ga2O3(100)面孪晶相互作用的第一性原理研究

李琪1, 付博2, 余博文1, 赵昊1, 林娜1, 贾志泰1, 赵显1,3, 陶绪堂1   

  1. 1.山东大学晶体材料国家重点实验室,济南 250100;
    2.青岛科技大学信息科学技术学院,青岛 266061;
    3.山东大学光学高等研究中心,青岛 266237
  • 收稿日期:2024-12-23 出版日期:2025-03-15 发布日期:2025-04-03
  • 通信作者: 贾志泰,博士,教授。E-mail:z.jia@sdu.edu.cn; 贾志泰,山东大学教授、博士生导师、泰山学者青年专家,科技部重点研发计划项目负责人。现任新一代半导体材料研究院副主任,《人工晶体学报》青年编委。主要从事特种功能晶体材料的设计、生长及性能研究,多次主持国家及省部级重点项目,在国际期刊发表论文110余篇,获授权发明专利10余项。曾入选中国科协优秀科技论文、中国科协先导技术榜、江苏省双创团队等奖项。
  • 作者简介:李 琪(1998—),女,山东省人,博士研究生。E-mail:qi_li@mail.sdu.edu.cn
  • 基金资助:
    国家自然科学基金(62304118,51932004)

First-Principle Study on the Interaction Between Al/In Doping and (100) Twins in β-Ga2O3

LI Qi1, FU Bo2, YU Bowen1, ZHAO Hao1, LIN Na1, JIA Zhitai1, ZHAO Xian1,3, TAO Xutang1   

  1. 1. State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China;
    2. Department of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China;
    3. Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China
  • Received:2024-12-23 Online:2025-03-15 Published:2025-04-03

摘要: β-Ga2O3作为新一代超宽禁带半导体,在高功率器件及日盲探测器件等方面极具应用价值,近年来受到了研究者们的广泛关注。然而,β-Ga2O3单斜晶格的低对称性导致其面缺陷的形成能具有各向异性,其中(100)面孪晶的形成能较低,且在β-Ga2O3中广泛存在。为探索β-Ga2O3 (100)面孪晶的调控方案及其机理,本文基于第一性原理计算,探讨了β-Ga2O3中Al/In掺杂与(100)面孪晶之间的相互作用。对Al/In掺杂的β-Ga2O3 (100)面孪晶体系的结构、能量和电子特性分析表明,Al/In取代孪晶体系中的Ga原子会对(100)面孪晶的形成能造成显著影响。其中,在本研究的结构体系中,Al的掺入始终会提高(100)面孪晶的形成能,且不会显著改变带隙或移动带边、不会在带隙中产生额外的杂质能级。因此,Al/In掺杂被预测为β-Ga2O3 (100)面孪晶的一种潜在调控方案,适当的Al/In掺杂有助于抑制(100)面孪晶的形成,从而获得高质量的β-Ga2O3晶体。

关键词: β-Ga2O3, 孪晶界, 掺杂, 结构性质, 电学性质, 第一性原理

Abstract: As a new generation of ultra-wide bandgap semiconductor, β-Ga2O3 has significant application value in high-power devices and solar-blind detection devices, attracting extensive attention from researchers in recent years. However, the low symmetry of the monoclinic lattice of β-Ga2O3 leads to anisotropic formation energies for the planar defects, with the (100) twin boundary exhibiting a lower formation energy and being prevalent in β-Ga2O3. To explore the control methods and mechanisms for the formation of the β-Ga2O3 (100) twin boundary, the interactions between the Al/In dopants and the (100) twins using first-principles calculations were investigated in this paper. Analysis of the structure, energy, and electronic properties of the Al/In-doped β-Ga2O3 (100) twin boundary system indicates that the substitution of Ga in the twin system by Al/In significantly affects the formation energy of the (100) twin boundary. Notably, the incorporation of Al consistently raises the formation energy of the (100) twin boundary without significantly altering the bandgap, shifting the band edges, or introducing additional impurity levels within the bandgap. Therefore, Al/In incorporation is predicted to be a potential strategy for influencing the formation of β-Ga2O3 (100) twin boundary. An appropriate incorporation of Al/In may help suppress the formation of the (100) twin boundary and improve the quality of β-Ga2O3 crystals.

Key words: β-Ga2O3, twin boundary, doping, structural property, electronic property, first-principle

中图分类号: