
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (6): 960-969.DOI: 10.16553/j.cnki.issn1000-985x.2024.0321
喻超1(
), 张博1, 王琦琦2, 王希2, 胡于南2, 梁小燕1(
), 张继军1, 闵嘉华1, 王林军1
收稿日期:2024-12-23
出版日期:2025-06-20
发布日期:2025-06-23
通信作者:
梁小燕,高级实验师。E-mail:作者简介:喻超(1998—),男,广西壮族自治区人,硕士研究生。E-mail:yumiren23@shu.edu.cn
基金资助:
YU Chao1(
), ZHANG Bo1, WANG Qiqi2, WANG Xi2, HU Yunan2, LIANG Xiaoyan1(
), ZHANG Jijun1, MIN Jiahua1, WANG Linjun1
Received:2024-12-23
Online:2025-06-20
Published:2025-06-23
摘要: 生长态的CdZnTe (CZT)晶体中存在大量的本征点缺陷及其相关的复合缺陷,如何获取这些点缺陷信息及其影响至关重要。本文设计CZT晶体高温Cd气氛退火,通过退火时间控制原子扩散程度,进而调控样品点缺陷分布。对于移动加热器法(THM)生长的富碲态CZT,本文运用光生电流瞬态谱(PICTS)、低温光致发光(PL)、I-V测试和α粒子诱导瞬态电荷漂移测试研究了其点缺陷分布与电阻率、载流子迁移率和电荷收集效率等光电特性的关系。点缺陷测试结果表明,生长态样品中TeCd缺陷占主导地位,其浓度为4.47×1013 cm-3,捕获截面为9.34×10-16 cm2。经过24 h的Cd退火后,样品内部的缺陷类型发生变化,Cdi缺陷逐渐成为主导,其浓度达到4.49×1013 cm-3,捕获截面降至5.82×10-19 cm2。电学性能结果表明载流子迁移率、电荷收集效率与CZT点缺陷总浓度有关,内部电场由捕获截面最大的TeCd决定。Cd退火6 h的样品具有高的收集效率、高迁移率(697 cm2·V-1·s-1)和均匀的内部电场分布,但是电阻率较低。Cd原子在扩散过程中优先占据VCd和TeCd的位置,A中心和TeCd浓度呈指数型减少是导致电阻率下降的主要原因。
中图分类号:
喻超, 张博, 王琦琦, 王希, 胡于南, 梁小燕, 张继军, 闵嘉华, 王林军. 移动加热器法生长的CZT晶体内部点缺陷精细调控研究[J]. 人工晶体学报, 2025, 54(6): 960-969.
YU Chao, ZHANG Bo, WANG Qiqi, WANG Xi, HU Yunan, LIANG Xiaoyan, ZHANG Jijun, MIN Jiahua, WANG Linjun. Fine Modulation of Internal Point Defects in CZT Crystals Grown by the Traveling Heater Method[J]. Journal of Synthetic Crystals, 2025, 54(6): 960-969.
| Annealing atmosphere | Tsources/℃ | Tsample/℃ | Annealing time/h | Sample label |
|---|---|---|---|---|
| Saturated-Cd vapor | — | — | 0 | CZT-1 |
| 600 | 650 | 1 | CZT-2 | |
| 600 | 650 | 3 | CZT-3 | |
| 600 | 650 | 6 | CZT-4 | |
| 600 | 650 | 24 | CZT-5 | |
| Saturated-Te vapor | 600 | 650 | 72 | CZT-5(72Te) |
| 600 | 650 | 150 | CZT-5(150Te) |
表1 退火参数
Table 1 Annealing parameters
| Annealing atmosphere | Tsources/℃ | Tsample/℃ | Annealing time/h | Sample label |
|---|---|---|---|---|
| Saturated-Cd vapor | — | — | 0 | CZT-1 |
| 600 | 650 | 1 | CZT-2 | |
| 600 | 650 | 3 | CZT-3 | |
| 600 | 650 | 6 | CZT-4 | |
| 600 | 650 | 24 | CZT-5 | |
| Saturated-Te vapor | 600 | 650 | 72 | CZT-5(72Te) |
| 600 | 650 | 150 | CZT-5(150Te) |
| Trap type | Trap name | ET/eV | σn/cm2 | NT/cm-3, CZT-1 | NT/cm-3, CZT-2 | NT/cm-3, CZT-3 | NT/cm-3, CZT-4 | NT/cm-3, CZT-5 |
|---|---|---|---|---|---|---|---|---|
| Acceptor | (InCd+-VCd2-)- | 0.15 | 2.95×10-24 | 4.37×1013 | 3.89×1013 | 1.23×1013 | 7.13×1012 | 4.54×1012 |
| VCd2- | 0.38 | 4.76×10-20 | 7.35×1012 | 2.68×1012 | 9.85×1011 | 5.33×1011 | — | |
| Donor | Cdi2+ | 0.55 | 5.82×10-19 | — | — | — | — | 4.49×1013 |
| TeCd2+ | 0.74 | 9.34×10-16 | 4.47×1013 | 4.28×1013 | 3.23×1013 | 1.56×1013 | 4.91×1012 | |
| Total defect concentration | 9.58×1013 | 8.44×1013 | 4.56×1013 | 2.33×1013 | 5.44×1013 | |||
表2 样品在不同时间Cd退火后的点缺陷参数
Table 2 Point defect parameters of samples after Cd annealing for different time
| Trap type | Trap name | ET/eV | σn/cm2 | NT/cm-3, CZT-1 | NT/cm-3, CZT-2 | NT/cm-3, CZT-3 | NT/cm-3, CZT-4 | NT/cm-3, CZT-5 |
|---|---|---|---|---|---|---|---|---|
| Acceptor | (InCd+-VCd2-)- | 0.15 | 2.95×10-24 | 4.37×1013 | 3.89×1013 | 1.23×1013 | 7.13×1012 | 4.54×1012 |
| VCd2- | 0.38 | 4.76×10-20 | 7.35×1012 | 2.68×1012 | 9.85×1011 | 5.33×1011 | — | |
| Donor | Cdi2+ | 0.55 | 5.82×10-19 | — | — | — | — | 4.49×1013 |
| TeCd2+ | 0.74 | 9.34×10-16 | 4.47×1013 | 4.28×1013 | 3.23×1013 | 1.56×1013 | 4.91×1012 | |
| Total defect concentration | 9.58×1013 | 8.44×1013 | 4.56×1013 | 2.33×1013 | 5.44×1013 | |||
| Ratio | CZT-1 | CZT-2 | CZT-3 | CZT-4 | CZT-5 |
|---|---|---|---|---|---|
| 28.82 | 20.25 | 14.95 | 11.67 | 4.87 |
表3 样品在不同时间Cd气氛退火后的D1与D2的面积比
Table 3 Area ratio of D1 and D2 of samples after Cd-vapor annealing for different time
| Ratio | CZT-1 | CZT-2 | CZT-3 | CZT-4 | CZT-5 |
|---|---|---|---|---|---|
| 28.82 | 20.25 | 14.95 | 11.67 | 4.87 |
| Sample number | CZT-1 | CZT-2 | CZT-3 | CZT-4 |
|---|---|---|---|---|
| μ/(cm2·V-1·s-1) | 548 | 645 | 670 | 697 |
| η/% | 52 | 71 | 85 | 100 |
表4 样品在不同时间Cd退火后的电子迁移率和电荷收集效率
Table 4 Electron mobility and charge collection efficiency of samples after Cd annealing for different time
| Sample number | CZT-1 | CZT-2 | CZT-3 | CZT-4 |
|---|---|---|---|---|
| μ/(cm2·V-1·s-1) | 548 | 645 | 670 | 697 |
| η/% | 52 | 71 | 85 | 100 |
图7 样品在不同时间Cd退火后的点缺陷总浓度、电子迁移率和电荷收集效率
Fig.7 Total concentration of point defects, electron mobility and charge collection efficiency of samples after Cd annealing for different time
| 1 | ALAM M D, NASIM S S, HASAN S. Recent progress in CdZnTe based room temperature detectors for nuclear radiation monitoring[J]. Progress in Nuclear Energy, 2021, 140: 103918. |
| 2 | SCHLESINGER T E, TONEY J E, YOON H, et al. Cadmium zinc telluride and its use as a nuclear radiation detector material[J]. Materials Science and Engineering: R: Reports, 2001, 32(4/5): 103-189. |
| 3 | WU R, KANG Y, WEI D K, et al. Energy spectrum correction and carrier mobility calculation of CdZnTe pixel detector based on the depth of interaction[J]. IEEE Transactions on Nuclear Science, 2022, 69(7): 1773-1779. |
| 4 | AWADALLA S A, HUNT A W, LYNN K G, et al. Isoelectronic oxygen-related defect in CdTe crystals investigated using thermoelectric effect spectroscopy[J]. Physical Review B, 2004, 69(7): 075210. |
| 5 | GUL R, BOLOTNIKOV A, KIM H K, et al. Point defects in CdZnTe crystals grown by different techniques[J]. Journal of Electronic Materials, 2011, 40(3): 274-279. |
| 6 | KRASIKOV D, KNIZHNIK A, POTAPKIN B, et al. Why shallow defect levels alone do not cause high resistivity in CdTe[J]. Semiconductor Science Technology, 2013, 28(12): 125019. |
| 7 | CHERN S S, VYDYANATH H R, KROGER F A. The defect structure of CdTe: hall data[J]. Journal of Solid State Chemistry, 1975, 14(1): 33-43. |
| 8 | KIM K, HWANG S, YU H, et al. Two-step annealing to remove Te secondary-phase defects in CdZnTe while preserving the high electrical resistivity[J]. IEEE Transactions on Nuclear Science, 2018, 65(8): 2333-2337. |
| 9 | YANG G, BOLOTNIKOV A E, FOCHUK P M, et al. Thermo-migration of Te inclusions in CdZnTe during post-growth annealing in a temperature-gradient field[J]. Physica Status Solidi (c), 2014, 11(7/8): 1328-1332. |
| 10 | EGARIEVWE S U, YANG G, EGARIEVWE A A, et al. Post-growth annealing of Bridgman-grown CdZnTe and CdMnTe crystals for room-temperature nuclear radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 51-55. |
| 11 | SUH J, HWANG S, YU H, et al. High-temperature annealing of CdZnTe detectors[J]. IEEE Transactions on Nuclear Science, 2017, 64(12): 2966-2969. |
| 12 | FIEDERLE M, BABENTSOV V, FRANC J, et al. Growth of high resistivity CdTe and (Cd, Zn)Te crystals[J]. Crystal Research and Technology, 2003, 38(7/8): 588-597. |
| 13 | LI W W, CAO Z C, ZHANG B, et al. Study on the effect of Cd-diffusion annealing on the electrical properties of CdZnTe[J]. Journal of Crystal Growth, 2006, 292(1): 53-61. |
| 14 | LI G Q, ZHANG X L, JIE W Q, et al. Thermal treatment of detector-grade CdZnTe[J]. Journal of Crystal Growth, 2006, 295(1): 31-35. |
| 15 | 何亦辉, 介万奇, 周 岩, 等. 退火处理对CdZnTe晶体光电性能的影响[J]. 人工晶体学报, 2014, 43(2): 269-274. |
| HE Y H, JIE W Q, ZHOU Y, et al. Effects of annealing on the optical and electrical properties of CdZnTe crystals[J]. Journal of Synthetic Crystals, 2014, 43(2): 269-274 (in Chinese). | |
| 16 | WARDAK A, KOCHANOWSKA D M, KOCHAŃSKI M, et al. Effect of doping and annealing on resistivity, mobility-lifetime product, and detector response of (Cd, Mn)Te[J]. Journal of Alloys and Compounds, 2023, 936: 168280. |
| 17 | FIEDERLE M, EICHE C, SALK M, et al. Modified compensation model of CdTe[J]. Journal of Applied Physics, 1998, 84(12): 6689-6692. |
| 18 | VYDYANATH H R, ELLSWORTH J, KENNEDY J J, et al. Recipe to minimize Te precipitation in CdTe and (Cd, Zn)Te crystals[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1992, 10(4): 1476-1484. |
| 19 | WEI S-H, ZHANG S B. Chemical trends of defect formation and doping limit in Ⅱ-Ⅵ semiconductors:the case of CdTe[J]. Physical Review B, 2002, 66(15): 155211. |
| 20 | GREENBERG J H. P-T-X phase equilibrium and vapor pressure scanning of non-stoichiometry in the Cd-Zn-Te system[J]. Progress in Crystal Growth and Characterization of Materials, 2003, 47(2/3): 196-238. |
| 21 | GREENBERG J H, GUSKOV V N, ALIKHANYAN A S. Solid-vapor equilibrium in quasi-binary CdTe∶ZnTe[J]. Crystal Research and Technology, 2003, 38(7/8): 598-603. |
| 22 | MENG Y P, LIANG X Y, XIE C, et al. Effect of CZT powder burying CZT crystal on annealing in Cd atmosphere[J]. Crystal Research and Technology, 2023, 58(9): 2300054. |
| 23 | ZHANG J X, LIANG X Y, MIN J H, et al. Effect of point defects trapping characteristics on mobility-lifetime (μτ) product in CdZnTe crystals[J]. Journal of Crystal Growth, 2019, 519: 41-45. |
| 24 | EICHE C, MAIER D, SINERIUS D, et al. Investigation of compensation defects in CdTe∶Cl samples grown by different techniques[J]. Journal of Applied Physics, 1993, 74(11): 6667-6670. |
| 25 | RAKHSHANI A E, MAKDISI Y. Detailed study of bandgap energy levels in CdTe films electrodeposited from chlorine-containing solutions[J]. Physica Status Solidi (a), 2000, 179(1): 159-170. |
| 26 | RAKHSHANI A E. CdTe films electrodeposited from chlorine-containing solutions[J]. Journal of Physics Condensed Matter, 1999, 11(46): 9115-9126. |
| 27 | 袁绶章, 赵 文, 孔金丞, 等. Cd饱和气氛退火对碲锌镉晶体导电类型转变界面的影响[J]. 红外技术, 2021, 43(6): 517-522. |
| YUAN S Z, ZHAO W, KONG J C, et al. Influence of Cd-rich annealing on position-dependent conductivity transition in Cd1- x Zn x Te crystal[J]. Infrared Technology, 2021, 43(6): 517-522 (in Chinese). | |
| 28 | BABENTSOV V, BOIKO V, SCHEPELSKII G A, et al. Photoluminescence and electric spectroscopy of dislocation-induced electronic levels in semi-insulated CdTe and CdZnTe[J]. Journal of Luminescence, 2010, 130(8): 1425-1430. |
| 29 | NASIEKA I, KOVALENKO N, KUTNIY V, et al. Photoluminescence-based material quality diagnostics in the manufacturing of CdZnTe ionizing radiation sensors[J]. Sensors and Actuators A: Physical, 2013, 203: 176-180. |
| 30 | QIU P H, MIN J H, LIANG X Y, et al. Effect of deep level defects on CdZnTe detector internal electric field and device performance[J]. Journal of Applied Physics, 2021, 130(20): 205702. |
| 31 | MORTON E J, CROCKETT G M, SELLIN P J, et al. The charged particle response of CdZnTe radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 422(1/2/3): 169-172. |
| 32 | LI L X, HUANG G W, XI S X, et al. γ-ray energy spectrum response tailing in CdZnTe detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1037: 166922. |
| 33 | BOLOTNIKOV A E, CAMARDA G S, CUI Y, et al. Internal electric-field-lines distribution in CdZnTe detectors measured using X-Ray mapping[J]. IEEE Transactions on Nuclear Science, 2009, 56(3): 791-794. |
| 34 | YANG G, BOLOTNIKOV A E, CAMARDA G S, et al. Internal electric field investigations of a cadmium zinc telluride detector using synchrotron X-ray mapping and pockels effect measurements[J]. Journal of Electronic Materials, 2009, 38: 1563-1567. |
| 35 | AWADALLA S A, MACKENZIE J, CHEN H, et al. Characterization of detector-grade CdZnTe crystals grown by traveling heater method (THM)[J]. Journal of Crystal Growth, 2010, 312(4): 507-513. |
| 36 | PEKÁREK J, DĚDIČ V, FRANC J, et al. Infrared LED enhanced spectroscopic CdZnTe detector working under high fluxes of X-rays[J]. Sensors, 2016, 16(10): 1591. |
| 37 | SHCHERBAK L, FEICHOUK P, FOCHOUK P, et al. Self-compensation studies in Cd-saturated in-doped CdTe[J]. Journal of Crystal Growth, 1996, 161(1/2/3/4): 219-222. |
| [1] | 吴啸, 赵文, 起文斌, 宋林伟, 李向堃, 姜军, 孔金丞, 王善力. 碲锌镉晶体热退火技术的研究进展[J]. 人工晶体学报, 2025, 54(6): 912-923. |
| [2] | 霍晓青, 张胜男, 周金杰, 王英民, 程红娟, 孙启升. 3~4英寸Fe掺高阻β-Ga2O3单晶的制备及其性能研究[J]. 人工晶体学报, 2025, 54(3): 407-413. |
| [3] | 马启司, 刘江高, 折伟林, 曹聪, 张立超, 赵超, 范叶霞, 周振奇. 基于CGSim模拟的炉膛空气对流对碲锌镉晶体生长温场影响研究[J]. 人工晶体学报, 2024, 53(8): 1344-1351. |
| [4] | 曹聪, 刘江高, 范叶霞, 李振兴, 周振奇, 马启司, 牛佳佳. 碲锌镉晶体生长温度梯度与界面形状稳定性关系的研究[J]. 人工晶体学报, 2024, 53(4): 641-648. |
| [5] | 王坤元, 梁小燕, 闵嘉华, 张继军. 原位热处理对碲锌镉晶体质量和性能的影响[J]. 人工晶体学报, 2024, 53(12): 2079-2084. |
| [6] | 傅文峰, 朱旭鹏, 廖峻, 汝强, 薛书文, 张军. CZTS基单晶材料研究进展和展望[J]. 人工晶体学报, 2024, 53(1): 12-24. |
| [7] | 孟佳源, 李毅, 赵裕春, 武浩荣, 汪雪松, 骆婉君, 虞澜. Mg掺杂增强CuCrO2陶瓷的电传导及各向异性[J]. 人工晶体学报, 2024, 53(1): 163-169. |
| [8] | 徐哲人, 张继军, 曹祥智, 卢伟, 刘昊, 祁永武. 移动加热器法碲锌镉晶体生长系统热场研究[J]. 人工晶体学报, 2023, 52(9): 1589-1598. |
| [9] | 曹晟, 张锋, 刘绍祥, 陈思凯, 赵杨, 石轩, 赵洪泉. Er掺杂WS2的制备及光电特性研究[J]. 人工晶体学报, 2023, 52(5): 849-856. |
| [10] | 徐尊豪, 李进, 何显, 安百俊, 周春玲. 高拉速对ø 300 mm单晶硅点缺陷分布及生产能耗的影响[J]. 人工晶体学报, 2023, 52(4): 562-570. |
| [11] | 吴忠航, 孙斌, 黄钢, 屈骞, 唐懿文, 孙九爱. 碲锌镉器件技术进展及其在SPECT中的应用[J]. 人工晶体学报, 2023, 52(2): 196-207. |
| [12] | 李振兴, 柏伟, 王琰璋, 刘江高, 张瑛侠, 折伟林. 大尺寸非规则碲锌镉晶片双面抛光技术[J]. 人工晶体学报, 2023, 52(2): 244-251. |
| [13] | 金敏. 晶体人生丨介万奇:辐射探测半导体晶体拓荒者[J]. 人工晶体学报, 2022, 51(9-10): 1523-1526. |
| [14] | 杨祥龙, 陈秀芳, 谢雪健, 彭燕, 于国建, 胡小波, 王垚浩, 徐现刚. 8英寸导电型4H-SiC单晶的生长[J]. 人工晶体学报, 2022, 51(9-10): 1745-1748. |
| [15] | 李毅, 武浩荣, 胡一丁, 孟佳源, 宋宏远, 唐艳艳, 黎振华, 陈亮维, 刘斌, 虞澜. Mg掺杂调制铜铁矿结构CuAlO2多晶的微结构和电热传导[J]. 人工晶体学报, 2022, 51(8): 1422-1430. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS