
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (7): 1289-1296.DOI: 10.16553/j.cnki.issn1000-985x.2025.0077
杨帆(
), 张思媛, 董武佩, 王希正, 周铭, 居佃兴(
)
收稿日期:2025-04-13
出版日期:2025-07-20
发布日期:2025-07-30
通信作者:
居佃兴,博士,副教授。E-mail:jdx@qust.edu.cn
作者简介:杨 帆(2001—),男,山东省人,硕士研究生。E-mail:18806420336@163.com基金资助:
YANG Fan(
), ZHANG Siyuan, DONG Wupei, WANG Xizheng, ZHOU Ming, JU Dianxing(
)
Received:2025-04-13
Online:2025-07-20
Published:2025-07-30
摘要: 有机金属卤化物在X射线成像领域展现出巨大的应用潜力。然而,多晶薄膜闪烁体屏幕的均匀性差、透射率低和光散射等问题严重降低了X射线成像分辨率。本文使用空间限域法生长制备了英寸级(C24H20P)2MnBr4单晶薄膜,并对其进行了物相、光学和闪烁性能的研究。该晶体表现出90%的光致发光量子产率(PLQY)及优异的光稳定性,在365 nm紫外光下连续照射24 h,其光谱仍保持稳定。基于该晶体优异的光学性质,在X射线下产生83 000 photons/MeV(估算值)的高光产额,是商用LYSO闪烁体的2.5倍。此外,该晶体展现出优异的耐辐射稳定性,即使在504 mGy·s-1的高剂量率下暴露60 min后仍保持其性能的稳定性。基于上述优势,将(C24H20P)2MnBr4单晶薄膜应用于X射线成像,实现了约23 lp/mm的空间分辨率,在该领域展现出巨大的应用潜力。
中图分类号:
杨帆, 张思媛, 董武佩, 王希正, 周铭, 居佃兴. 英寸级(C24H20P)2MnBr4单晶薄膜生长及高分辨率X射线成像[J]. 人工晶体学报, 2025, 54(7): 1289-1296.
YANG Fan, ZHANG Siyuan, DONG Wupei, WANG Xizheng, ZHOU Ming, JU Dianxing. Growth and High Resolution X-Ray Imaging of Inch-Size (C24H20P)2MnBr4 Single Crystalline Film[J]. Journal of Synthetic Crystals, 2025, 54(7): 1289-1296.
图1 (C24H20P)2MnBr4单晶薄膜的生长方案。(a)高光散射的多晶薄膜;(b)低光散射的单晶薄膜;(c)有机金属卤化物单晶薄膜生长示意图
Fig.1 Growth scheme of (C24H20P)2MnBr4 single crystal thin film. (a) Polycrystalline thin film with high light scattering; (b) single crystalline film with low light scattering; (c) schematic diagram for growth of metal hybrid halide single crystalline film
图2 (C24H20P)2MnBr4的单晶及结构。(a)(C24H20P)2MnBr4的单晶和单晶薄膜照片;(b)(C24H20P)2MnBr4的晶体结构;(c)(C24H20P)2MnBr4单晶薄膜的XRD图谱;(d)(C24H20P)2MnBr4晶体的差示扫描量热法(DSC)和热重分析(TGA)曲线
Fig.2 Single crystal and structure of (C24H20P)2MnBr4. (a) Single crystal and single crystal thin film images of (C24H20P)2MnBr4; (b) crystal structure of (C24H20P)2MnBr4; (c) XRD patterns of (C24H20P)2MnBr4 single crystal thin film; (d) differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) curves of (C24H20P)2MnBr4 crystal
图3 (C24H20P)2MnBr4晶体的激发、发射光谱及其稳定性。(a)C24H56N2Cu4Br6晶体的激发和发射光谱;(b)不同激发波长下(C24H20P)2MnBr4晶体的PL光谱;(c)(C24H20P)2MnBr4晶体在环境空气中储存3个月后的PL发射光谱
Fig.3 PLE, PL spectra and stability of (C24H20P)2MnBr4 crystal. (a) PLE and PL spectra of C24H56N2Cu4Br6 crystal; (b) PL spectra of (C24H20P)2MnBr4 crystal at different excitation wavelengths; (c) PL emission spectra of (C24H20P)2MnBr4 crystals after 3 months of storage in ambient air
图4 (C24H20P)2MnBr4晶体的光学性质。(a)(C24H20P)2MnBr4晶体的PL光谱在100~300 K温度范围的变化趋势;(b)PL光谱强度随温度的变化趋势;(c)(C24H20P)2MnBr4晶体的激子结合能表征;(d)PL光谱的FWHM随温度的变化趋势;(e)(C24H20P)2MnBr4晶体在不同温度下的TRPL光谱;(f)(C24H20P)2MnBr4晶体在连续紫外光照下的稳定性
Fig.4 Optical properties of (C24H20P)2MnBr4 crystals. (a) Temperature-dependent PL spectra of (C24H20P)2MnBr4 crystal over the temperature range of 100~300 K; (b) corresponding PL intensity of (C24H20P)2MnBr4 variation with temperature; (c) fitting result of activation energy from the temperature-dependent PL spectra of (C24H20P)2MnBr4 crystal; (d) FWHM of PL spectra as a function of temperature; (e) temperature-dependent PL decay curves of (C24H20P)2MnBr4 crystal; (f) stability of (C24H20P)2MnBr4 crystal under the continuous UV light
图5 X射线下的闪烁性能表征。(a)有机金属卤化物X射线闪烁体发光机制;(b)(C24H20P)2MnBr4晶体的RL和PL光谱比较;(c)(C24H20P)2MnBr4晶体的吸收系数与光子能量的函数关系;(d)(C24H20P)2MnBr4、BGO和LYSO晶体的X射线衰减效率随厚度的变化;(e)相同剂量率(剂量:504 mGy·s-1,电压:50 kV,电流:200 μA)X射线照射下(C24H20P)2MnBr4晶体与标准BGO和LYSO闪烁体的RL光谱比较;(f)不同剂量率下(C24H20P)2MnBr4晶体的RL光谱;(g)(C24H20P)2MnBr4晶体的RL强度与X射线辐照剂量率呈线性关系,并与BGO和LYSO晶体的RL强度进行了比较;(h)(C24H20P)2MnBr4晶体在X射线下的稳定性
Fig.5 Characterization of scintillation properties under X-rays. (a) Mechanism of X-ray scintillation in a metal hybrid halide;(b) comparison of RL and PL spectra of (C24H20P)2MnBr4 crystals; (c) absorption coefficients as a function of photon energy for (C24H20P)2MnBr4 crystal; (d) X-ray attenuation efficiency of (C24H20P)2MnBr4, BGO and LYSO crystals as a function of thickness; (e) RL spectra of (C24H20P)2MnBr4 crystal compared with standard BGO and LYSO scintillators under X-ray irradiation with the same dose rate (dose rate: 504 mGy·s-1, voltage: 50 kV, current: 200 μA); (f) RL spectra of (C24H20P)2MnBr4 crystal under different dose rates; (g) linear relationship between RL intensity and X-ray irradiation dose rate of (C24H20P)2MnBr4 crystal compared with that of BGO and LYSO; (h) stability of (C24H20P)2MnBr4 crystal under the X-ray
图6 X射线成像表征。(a)自主搭建的X射线成像系统示意图;(b)金属弹簧和其他模型的X射线成像结果;(c)(C24H20P)2MnBr4单晶薄膜X射线成像的分辨率表征;(d)(C24H20P)2MnBr4单晶薄膜闪烁屏的(MTF)曲线(剂量:504 mGy·s-1,电压:50 kV,电流:200 μA)
Fig.6 X-ray imaging characterization. (a) Diagram of home-built X-ray imaging system; (b) X-ray imaging results for the metal spring and other models; (c) X-ray imaging spatial resolution of (C24H20P)2MnBr4 single crystal film; (d) MTF curves of the (C24H20P)2MnBr4 single crystal film scintillation screen (dose rate: 504 mGy·s-1, voltage: 50 kV, current: 200 μA)
| [1] | HAN K, SAKHATSKYI K, JIN J C, et al. Seed-crystal-induced cold sintering toward metal halide transparent ceramic scintillators[J]. Advanced Materials, 2022, 34(17): 2110420. |
| [2] | MIAH M H, KHANDAKER M U, AMINUL ISLAM M, et al. Perovskite materials in X-ray detection and imaging: recent progress, challenges, and future prospects[J]. RSC Adv, 2024, 14(10): 6656-6698. |
| [3] | DONG S Y, FAN Z H, WEI W, et al. Bottom-up construction of low-dimensional perovskite thick films for high-performance X-ray detection and imaging[J]. Light, Science & Applications, 2024, 13(1): 174. |
| [4] | LI H, ZHANG Y, ZHOU M, et al. A solar-blind perovskite scintillator realizing portable X-ray imaging[J]. ACS Energy Letters, 2022, 7(9): 2876-2883. |
| [5] | PAN W T, HE Y H, LI W J, et al. Cation-π interactions enabled water-stable perovskite X-ray flat mini-panel imager[J]. Nature Communications, 2024, 15(1): 257. |
| [6] | SHEN J H, JIA R, HU Y, et al. Cold-sintered all-inorganic perovskite bulk composite scintillators for efficient X-ray imaging[J]. ACS Applied Materials & Interfaces, 2024, 16(19): 24703-24711. |
| [7] | WANG C, YAN Z G, WANG Y, et al. All-inorganic ruddlesden-popper perovskite Cs2CdCl4∶Mn for low-dose and flexible X-ray imaging[J]. ACS Materials Letters, 2024, 6(4): 1429-1438. |
| [8] | ZHANG Z Z, WEI J H, LUO J B, et al. Large-area laminar TEA2MnI4 single-crystal scintillator for X-ray imaging with impressive high resolution[J]. ACS Applied Materials & Interfaces, 2022, 14(42): 47913-47921. |
| [9] | CHEN J C, JIANG G C, HAMANN E, et al. Organosilicon-based ligand design for high-performance perovskite nanocrystal films for color conversion and X-ray imaging[J]. ACS Nano, 2024, 18(14): 10054-10062. |
| [10] | LU J, JIANG X M, GAO J, et al. Probing the excited electronic configuration and associative excitons in pyrene-based X-ray scintillating MOF excimer: bridging the gap between theory and experiments[J]. Advanced Optical Materials, 2024, 12(11): 2302376. |
| [11] | CHEN W Q, ZHOU M, LIU Y, et al. All-inorganic perovskite polymer-ceramics for flexible and refreshable X-ray imaging[J]. Advanced Functional Materials, 2022, 32(2): 2107424. |
| [12] | ZHOU M, JIANG H L, HOU T K, et al. Inch-size and thickness-adjustable hybrid manganese halide single-crystalline films for high resolution X-ray imaging[J]. Chemical Engineering Journal, 2024, 490: 151823. |
| [13] | YANG F, WU Z N, YANG M T, et al. Stable luminescent organic manganese halide used for high-resolution X-ray imaging[J]. ACS Photonics, 2024, 11, 3012-3018. |
| [14] | CHEN X Y, LI M, GE L, et al. Ultralong red room-temperature phosphorescence of 2D organic-inorganic metal halide perovskites for afterglow red LEDs and X-ray scintillation applications[J]. Inorganic Chemistry, 2023, 62(40): 16538-16546. |
| [15] | SUN Q S, WANG H Y, LI J, et al. Nano organic co-crystal scintillator for X-ray imaging[J]. Small Structures, 2023, 4(10): 2200275. |
| [16] | LI Y, CHEN L, GAO R L, et al. Nanosecond and highly sensitive scintillator based on all-inorganic perovskite single crystals[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1489-1495. |
| [17] | WANG H, WANG J X, SONG X, et al. Copper organometallic iodide arrays for efficient X-ray imaging scintillators[J]. ACS Central Science, 2023, 9(4): 668-674. |
| [18] | GU R R, HAN K, JIN J C, et al. Surfactant-assisted synthesis of hybrid copper(I) halide nanocrystals for X-ray scintillation imaging[J]. Chemistry of Materials, 2024, 36(6): 2963-2970. |
| [19] | LI J Y, HU Q S, XIAO J W, et al. High-stability double perovskite scintillator for flexible X-ray imaging[J]. Journal of Colloid and Interface Science, 2024, 671: 725-731. |
| [20] | LI R H, SANG T T, CAO Q, et al. The synergy of inorganic cluster cage and organic ligands in lanthanide-titanium-oxo clusters scintillators for high performance X-ray imaging[J]. Science China Materials, 2024, 67(8): 2575-2582. |
| [21] | ZHANG F, ZHOU Y C, CHEN Z P, et al. Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens[J]. Advanced Materials, 2022, 34(43): 2204801. |
| [22] | WU T, SHI Y, WU H, et al. Potassium-regulated lead-free cesium copper iodide Cs3Cu2I5 perovskites with enhanced scintillation properties and their application in high-resolution X-ray imaging[J]. Materials Chemistry C, 2024, 12, 1002-1011. |
| [23] | XU L J, SUN C Z, XIAO H, et al. Green-light-emitting diodes based on tetrabromide manganese(Ⅱ) complex through solution process[J]. Advanced Materials, 2017, 29(10): 1605739. |
| [24] | LIU Y Y, XIE Z, ZHENG W, et al. High-efficiency narrow-band blue emission from lead-doped Cs2ZnBr4 nanocrystals[J]. Chemical Engineering Journal, 2023, 460: 141683. |
| [25] | GONG Z L, ZHENG W, HUANG P, et al. Highly efficient Sb3+ emitters in 0D cesium indium chloride nanocrystals with switchable photoluminescence through water-triggered structural transformation[J]. Nano Today, 2022, 44: 101460. |
| [26] | CHENG X W, XIE Z, ZHENG W, et al. Boosting the self-trapped exciton emission in alloyed Cs2(Ag/Na)InCl6 double perovskite via Cu+ doping[J]. Advanced Science, 2022, 9(7): 2103724. |
| [1] | 偰航, 靳志文. 薄膜制备方法及其结晶行为对卤化物钙钛矿X射线探测器成像性能的影响研究综述[J]. 人工晶体学报, 2025, 54(7): 1100-1120. |
| [2] | 张跃, 肖家文. 热活化延迟荧光型闪烁体研究进展[J]. 人工晶体学报, 2025, 54(7): 1175-1188. |
| [3] | 惠娟, 杨旸. 量子剪裁型镱离子掺杂钙钛矿纳米晶的合成及其在X射线多能谱成像中的新应用[J]. 人工晶体学报, 2025, 54(7): 1121-1131. |
| [4] | 赵昊, 余博文, 李琪, 李光清, 刘医源, 林娜, 李阳, 穆文祥, 贾志泰. Mist-CVD法生长LiGa5O8单晶薄膜及其导电机理研究[J]. 人工晶体学报, 2025, 54(6): 997-1004. |
| [5] | 李悌涛, 卢耀平, 陈端阳, 齐红基, 张海忠. 氧化镓同质外延及二维“台阶流”生长研究[J]. 人工晶体学报, 2025, 54(2): 219-226. |
| [6] | 李昊晴, 苏煜. BaTiO3纳米单晶薄膜在外加电场作用下畴结构演化的相场研究[J]. 人工晶体学报, 2024, 53(7): 1136-1149. |
| [7] | 张庆文, 单东明, 张虎, 丁然. 溶液空间限域法制备有机-无机杂化卤化铅钙钛矿单晶薄膜及其器件应用研究进展[J]. 人工晶体学报, 2024, 53(4): 572-584. |
| [8] | 王晓莉, 杨蕾, 侯越云. 中子/伽马双探测用稀土卤化物闪烁晶体的研究进展[J]. 人工晶体学报, 2023, 52(4): 671-677. |
| [9] | 王海丽, 李辉, 周南浩, 石爽爽, 苏健, 张微, 陈建荣, 黄存新. Gd3(Al,Ga)5O12∶Ce晶体生长与闪烁性能研究[J]. 人工晶体学报, 2023, 52(12): 2156-2160. |
| [10] | 罗亮, 王承二, 余金秋. 掺Sr2+溴化铈晶体的生长与闪烁性能研究[J]. 人工晶体学报, 2022, 51(8): 1337-1342. |
| [11] | 丁言国, 叶崇志. YAlO3∶Ce晶体的生长及性能研究[J]. 人工晶体学报, 2022, 51(6): 965-972. |
| [12] | 刘宏, 桑元华, 孙德辉, 王东周, 王继扬. 信息时代的铌酸锂晶体:进展与展望[J]. 人工晶体学报, 2021, 50(4): 708-715. |
| [13] | 田瑞丰, 张璐, 潘明艳, 齐红基. Si4+共掺杂Yb∶YAG单晶生长和光谱特性研究[J]. 人工晶体学报, 2021, 50(10): 1957-1962. |
| [14] | 张欣雷, 王涛, 查钢强. CsPbBr3单晶薄膜制备及其X射线探测性能研究[J]. 人工晶体学报, 2021, 50(10): 1900-1906. |
| [15] | 王绍涵, 吴云涛, 李焕英, 史坚, 任国浩. 基质组分配比对Cs2LiYCl6∶Ce晶体生长及闪烁性能的影响[J]. 人工晶体学报, 2021, 50(10): 1925-1932. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS