[1] CHEN Z M, LU X, TU Y J, et al. ε-Ga2 O3: an emerging wide bandgap piezoelectric semiconductor for application in radio frequency resonators[J]. Advanced Science, 2022, 9(32): e2203927. [2] HARADA T, ITO S, TSUKAZAKI A. Electric dipole effect in PdCoO2/β-Ga2O3Schottky diodes for high-temperature operation[J]. Science Advances, 2019, 5(10): eaax5733. [3] ZHOU F, GONG H H, XIAO M, et al. An avalanche-and-surge robust ultrawide-bandgap heterojunction for power electronics[J]. Nature Communications, 2023, 14(1): 4459. [4] JINNO R, CHANG C S, ONUMA T, et al. Crystal orientation dictated epitaxy of ultrawide-bandgap 5.4- to 8.6-eV α-(AlGa)2O3 on m-plane sapphire[J]. Science Advances, 2021, 7(2): eabd5891. [5] LI T T, WANG M Y, LIU X L, et al. Hydrogen impurities in ZnO: shallow donors in ZnO semiconductors and active sites for hydrogenation of carbon species[J]. Journal of Physical Chemistry Letters, 2020, 11(7): 2402-2407. [6] ZHANG J C, DONG P F, DANG K, et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes[J]. Nature Communications, 2022, 13(1): 3900. [7] XU X R, DENG Y C, LI T T, et al. Ga2O3 vertical FinFET with integrated Schottky barrier diode for low-loss conduction[J]. IEEE Transactions on Electron Devices, 2024, 71(4): 2530-2535. [8] SCHEWSKI R, LION K, FIEDLER A, et al. Step-flow growth in homoepitaxy of β-Ga2O3 (100)—the influence of the miscut direction and faceting[J]. APL Materials, 2019, 7(2): 022515. [9] BIN ANOOZ S, GRÜNEBERG R, WOUTERS C, et al. Step flow growth of β-Ga2O3 thin films on vicinal (100) β-Ga2O3 substrates grown by MOVPE[J]. Applied Physics Letters, 2020, 116(18): 182106. [10] CHEN Z M, LI Z Q, ZHUO Y, et al. Layer-by-layer growth of ε-Ga2O3 thin film by metal-organic chemical vapor deposition[J]. Applied Physics Express, 2018, 11(10): 101101. [11] TERSOFF J, DENIER VAN DER GON A W, TROMP R M. Critical island size for layer-by-layer growth[J]. Physical Review Letters, 1994, 72(2): 266-269. [12] LI T T, WANG F, LIN R C, et al. In-plane enhanced epitaxy for step-flow AlN yielding a high-performance vacuum-ultraviolet photovoltaic detector[J]. CrystEngComm, 2020, 22(4): 654-659. [13] 黄 丰, 郑 伟, 王梦晔, 等. 氧化锌单晶生长、载流子调控与应用研究进展[J]. 人工晶体学报, 2021, 50(2): 209-243. HUANG F, ZHENG W, WANG M Y, et al. Development of zinc oxide: bulk crystal growth, arbitrary regulation of carrier concentration and practical applications[J]. Journal of Synthetic Crystals, 2021, 50(2): 209-243 (in Chinese). [14] SCHEWSKI R, BALDINI M, IRMSCHER K, et al. Evolution of planar defects during homoepitaxial growth of β-Ga2O3 layers on (100) substrates—a quantitative model[J]. Journal of Applied Physics, 2016, 120(22): 225308. [15] ALEMA F, ZHANG Y W, OSINSKY A, et al. Low 114 cm-3 free carrier concentration in epitaxial β-Ga2O3 grown by MOCVD[J]. APL Materials, 2020, 8(2): 021110. [16] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [17] SPENCER B J, VOORHEES P W, TERSOFF J. Enhanced instability of strained alloy films due to compositional stresses[J]. Physical Review Letters, 2000, 84(11): 2449-2452. [18] TILLMANN K, FöRSTER A, Critical dimensions for the formation of interfacial misfit dislocations of In0.6Ga0.4As islands on GaAs (001)[J]. Thin Solid Films,2000, 368 (1): 93-104. [19] POHL U W. Epitaxy of semiconductors [M]. Springer, 2020. [20] LI T T, ZHU Y M, JI X, et al. Experimental evidence on stability of N substitution for O in ZnO lattice[J]. Journal of Physical Chemistry Letters, 2020, 11(20): 8901-8907. [21] LI Y W, XIU X Q, XU W L, et al. Microstructural analysis of heteroepitaxial β-Ga2O3 films grown on (0001) sapphire by halide vapor phase epitaxy[J]. Journal of Physics D: Applied Physics, 2021, 54(1): 014003. |