欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (2): 219-226.DOI: 10.16553/j.cnki.issn1000-985x.2024.0269

• 薄膜外延 • 上一篇    下一篇

氧化镓同质外延及二维“台阶流”生长研究

李悌涛1, 卢耀平1, 陈端阳2, 齐红基2, 张海忠1   

  1. 1.福州大学物理与信息工程学院,福州 350100;
    2.中国科学院上海光学精密机械研究所,上海 201800
  • 收稿日期:2024-11-01 发布日期:2025-03-04
  • 通信作者: 李悌涛,博士,副教授。E-mail:litt69@fzu.edu.cn;李悌涛,福州大学副教授、硕士生导师。中山大学凝聚态物理专业博士,从事宽禁带半导体外延材料生长及其在深紫外探测和功率电子器件中的应用研究,致力于“载流子自由调控”核心科学问题。主持国家及省部级科研项目4项,在IEEE Electron Device Lett、Appl Phys Lett等期刊发表20余篇学术论文。指导荣获2024中国国际大学生创新大赛金奖,并接受央视专访。张海忠,博士,教授。E-mail:haizhong_zhang@fzu.edu.cn;张海忠,福州大学教授、博士生导师。新加坡南洋理工大学微电子专业博士,福州大学物理与信息工程学院院长助理、“闽江学者奖励计划”特聘教授、博导。国家级高层次青年人才计划入选者,福建省“百人计划”入选者,2023年海外高层次留学人才回国资助项目获得者。主要从事第四代氧化镓化合物半导体材料及其在高压功率芯片和紫外光电探测芯片领域的应用研究。
  • 作者简介:李悌涛(1991—),男,福建省人,博士,副教授。E-mail:litt69@fzu.edu.cn
  • 基金资助:
    国家自然科学基金(62204270);福建省科技重大专项(2022HZ027006);福建省自然科学基金(2024J01251)

Research on Gallium Oxide Homoepitaxy and Two-Dimensional Step-Flow Growth

LI Titao1, LU Yaoping1, CHEN Duanyang2, QI Hongji2, ZHANG Haizhong1   

  1. 1. College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China;
    2. Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • Received:2024-11-01 Published:2025-03-04

摘要: 如何同质外延生长出具有原子级平整的氧化镓(Ga2O3)单晶薄膜,是制备高性能Ga2O3基功率电子器件或紫外光电器件的基础。本文通过金属有机气相外延(MOVPE)技术综合调控外延生长的热力学条件与动力学参数,在Ga2O3衬底上制备了厚度为1.0 μm的器件级Ga2O3单晶薄膜(非故意掺杂),对薄膜样品进行了物相、表面形貌、晶体质量和电学性能的研究。该薄膜具有单一β相,呈现出与衬底相同的(100)面择优取向。对Ga2O3薄膜表面形貌进行AFM表征,呈现出典型的台阶流形貌,表面粗糙度0.166 nm,且台阶高度0.6 nm (a/2),表明薄膜具有原子级平整。进一步通过HRXRD双晶摇摆曲线评估Ga2O3薄膜结晶质量,外延膜的FWHM低于单晶衬底,表明外延在晶格匹配衬底上的Ga2O3薄膜质量优于衬底。霍尔效应测试结果表明,Ga2O3薄膜的电子迁移率为92.1 cm2/(V·s),载流子浓度为2.65×1016 cm-3。本文的研究结果表明只要通过精细化调控温度、压力、Ⅵ/Ⅲ比等关键热力学条件,使核心动力学参数中的横向扩散速率充分大于纵向沉积速率,就有可能在通用的非刻意斜切衬底上实现高长速二维“台阶流”生长。本研究所制备的具有优异晶体质量与电学特性的(100)面同质外延单晶薄膜,在制造高性能Ga2O3功率电子器件具有重要的应用潜力。

关键词: 氧化镓, 同质外延, 二维“台阶流”生长, MOVPE, 单晶薄膜, 原子级平整

Abstract: The achievement of single crystalline gallium oxide (Ga2O3) homoepitaxial layers with atomic-level smoothness is fundamental for the fabrication of high-performance Ga2O3-based power electronics or ultraviolet photodetectors. In this study, metal organic vapor phase epitaxy (MOVPE) technique was employed to comprehensively control the thermodynamic conditions and kinetic factors of epitaxial growth, resulting in the production of unintentionally doped, device-grade Ga2O3 single crystal films with a thickness of 1.0 μm on Ga2O3 substrates. Characterizations of the Ga2O3 samples were performed to investigate phase composition, surface morphology, crystal quality, and electrical properties. The Ga2O3 homoepilayer exhibits a single β phase with a preferential orientation matching the (100) plane of the substrate. Atomic force microscopy (AFM) analysis reveals a typical step-flow morphology, with a surface roughness of 0.166 nm and a step height of 0.6 nm (a/2), indicating atomic-level smoothness. High-resolution X-ray diffraction (HRXRD) rocking curve analysis was conducted to further evaluate the crystallinity of the Ga2O3 epilayers. The full width at half maximum (FWHM) of the epilayers is lower than that of the single crystal substrate, indicating superior quality of the Ga2O3 epilayers grown on the lattice-matched substrate. Hall effect measurements indicate an electron mobility of 92.1 cm2/(V·s) and a carrier concentration of 2.65×1016 cm-3. Our results demonstrate that high-growth-rate 2D step-flow growth on commonly used non-intentionally miscut substrates can be achieved as long as the critical thermodynamic conditions, such as temperature, pressure, and the Ⅵ/Ⅲ ratio—are finely tuned to ensure that the lateral diffusion rate of the core kinetic parameters is sufficiently greater than the vertical deposition rate. The exceptional crystal quality and electrical properties highlight the significant potential of these (100)-oriented homoepitaxial films in the development of high-performance Ga2O3-based power electronics.

Key words: gallium oxide, homoepitaxy, two-dimensional step-flow growth, MOVPE, single-crystalline film, atomic-level smoothness

中图分类号: