
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (9): 1642-1653.DOI: 10.16553/j.cnki.issn1000-985x.2025.0063
陈文涛1(
), 庄杏宜2, 安航宜1, 来中杰1, 王爱荣1, 罗亚妮1(
), 史忠丰1, 李家明1(
)
收稿日期:2025-03-27
出版日期:2025-09-20
发布日期:2025-09-23
通信作者:
罗亚妮,李家明
作者简介:陈文涛(2000—),男,广东省人,硕士研究生。E-mail:willtl@163.com
基金资助:
CHEN Wentao1(
), ZHUANG Xingyi2, AN Hangyi1, LAI Zhongjie1, WANG Airong1, LUO Yani1(
), SHI Zhongfeng1, LI Jiaming1(
)
Received:2025-03-27
Online:2025-09-20
Published:2025-09-23
Contact:
LUO Yani, LI Jiaming
摘要: 本文以间苯二甲酸(H2IPA)和1,3,5-三(1-咪唑基)苯(TIB)为混合配体,硝酸钴为金属源,通过溶剂热法合成了一例新型二维钴金属有机框架化合物{[Co(IPA)(TIB)]·2H2O} n (Co-MOF)。通过单晶X射线衍射、粉末X射线衍射、红外光谱、热重分析及荧光光谱等手段对其结构和性能进行了系统表征。单晶衍射结果表明,该Co-MOF属于单斜晶系,空间群为P21/c,晶胞参数为a=0.964 28(7) nm,b=1.282 98(10) nm,c=1.783 32(14) nm。其不对称单元结构包含1个Co(Ⅱ)离子、1个脱质子的IPA2-配体、1个TIB中性配体和2个结晶水分子。IPA2-配体和TIB配体都通过μ2-η1:η1桥联方式键合2个Co2+,形成一四配位的扭曲四面体CoN2O2构型。这些CoN2O2次小结构单元,进一步由倒反对称相关联的IPA2-和TIB配体连接,形成二维梯状钴基金属有机框架结构。拓扑结构分析表明该二维Co-MOF可简化为Schläfli符号为(44.62)的(4,4)-连接的sql网格结构。此外,Co-MOF层与层之间存在由TIB配体中对称相关联咪唑环间所形成的强π-π堆积作用,将二维Co-MOF层拓展为三维超分子结构。荧光实验研究表明,该Co-MOF对水中的3种多氧酸根阴离子Cr2O72-、CrO42-、S2O82-和Fe3+展现出高选择性和高灵敏的荧光猝灭响应,其检测限分别为2.007×10-4、2.514×10-4、8.331×10-4和2.709×10-4 mol/L。得益于开放的金属位点和其中未参与配位的咪唑基团,该Co-MOF兼具优异的热稳定性与荧光传感性能,在环境污染物检测领域具有广泛的潜在应用价值。
中图分类号:
陈文涛, 庄杏宜, 安航宜, 来中杰, 王爱荣, 罗亚妮, 史忠丰, 李家明. 一例二维钴金属有机框架材料的合成、晶体结构及水中荧光识别性能研究[J]. 人工晶体学报, 2025, 54(9): 1642-1653.
CHEN Wentao, ZHUANG Xingyi, AN Hangyi, LAI Zhongjie, WANG Airong, LUO Yani, SHI Zhongfeng, LI Jiaming. Synthesis, Crystal Structure, and Fluorescence Sensing Property in Water by a Two-Dimensional Cobalt Metal-Organic Framework[J]. Journal of Synthetic Crystals, 2025, 54(9): 1642-1653.
| Complex | {[Co(IPA)(TIB)]·2H2O} n |
|---|---|
| Empirical formula | C23H20CoN6O6 |
| Formula weight | 535.38 |
| T/K | 298.15 |
| Crystal system | Monoclinic |
| Crystal size | 0.520 mm×0.240 mm×0.120 mm |
| Space-group | P21/c |
| a/nm | 0.964 28(7) |
| b/nm | 1.282 98(10) |
| c/nm | 1.783 32(14) |
| α/(°) | 90 |
| β/(°) | 90.001(1) |
| γ/(°) | 90 |
| V/nm3 | 2.206 2(3) |
| Z | 4 |
| ρcalc/(g·cm-3) | 1.612 |
| μ/mm-1 | 0.834 |
| F(000) | 1 100.0 |
| 2θ range for data collection/(°) | 4.568 to 50.054 |
| Index ranges | -10≤h≤11, -14≤k≤15, -13≤l≤21 |
| Reflections collected | 6 943 |
| Independent reflections, Rint, Rsigma | 3 797,0.030 8,0.048 3 |
| Data/restraints/parameters | 3 797/0/307 |
| Goodness-of-fit on F2 | 1.035 |
| R1, wR2 [I≥2σ(I)] | 0.041 7, 0.111 1 |
| R1, wR2 [all data] | 0.056 2, 0.121 9 |
| CCDC/ICSD | 2434500 |
表1 Co-MOF的晶体学数据参数
Table 1 Crystallographic data parameters of Co-MOF
| Complex | {[Co(IPA)(TIB)]·2H2O} n |
|---|---|
| Empirical formula | C23H20CoN6O6 |
| Formula weight | 535.38 |
| T/K | 298.15 |
| Crystal system | Monoclinic |
| Crystal size | 0.520 mm×0.240 mm×0.120 mm |
| Space-group | P21/c |
| a/nm | 0.964 28(7) |
| b/nm | 1.282 98(10) |
| c/nm | 1.783 32(14) |
| α/(°) | 90 |
| β/(°) | 90.001(1) |
| γ/(°) | 90 |
| V/nm3 | 2.206 2(3) |
| Z | 4 |
| ρcalc/(g·cm-3) | 1.612 |
| μ/mm-1 | 0.834 |
| F(000) | 1 100.0 |
| 2θ range for data collection/(°) | 4.568 to 50.054 |
| Index ranges | -10≤h≤11, -14≤k≤15, -13≤l≤21 |
| Reflections collected | 6 943 |
| Independent reflections, Rint, Rsigma | 3 797,0.030 8,0.048 3 |
| Data/restraints/parameters | 3 797/0/307 |
| Goodness-of-fit on F2 | 1.035 |
| R1, wR2 [I≥2σ(I)] | 0.041 7, 0.111 1 |
| R1, wR2 [all data] | 0.056 2, 0.121 9 |
| CCDC/ICSD | 2434500 |
| Bond | Length/nm | Bond | Angle/(°) |
|---|---|---|---|
| Co1—N6 | 0.201 5(3) | N6—Co1—O2 | 109.81(10) |
| Co1—O2 | 0.195 0(2) | N1ⅱ—Co1—O2 | 117.01(11) |
| Co1—N1ⅱ | 0.203 0(3) | O3i—Co1—O2 | 119.10(9) |
| Co1—O3i | 0.197 6(2) | O3i—Co1—N6 | 107.23(10) |
| Co1ⅳ—N1 | 0.203 0(3) | O3i—Co1—N1ⅱ | 96.38(10) |
| Co1ⅲ—O3 | 0.197 6(2) | N1ⅱ—Co1—N6 | 105.86(10) |
表2 Co-MOF的键长和键角数据
Table 2 Selected bond lengths and bond angles of Co-MOF
| Bond | Length/nm | Bond | Angle/(°) |
|---|---|---|---|
| Co1—N6 | 0.201 5(3) | N6—Co1—O2 | 109.81(10) |
| Co1—O2 | 0.195 0(2) | N1ⅱ—Co1—O2 | 117.01(11) |
| Co1—N1ⅱ | 0.203 0(3) | O3i—Co1—O2 | 119.10(9) |
| Co1—O3i | 0.197 6(2) | O3i—Co1—N6 | 107.23(10) |
| Co1ⅳ—N1 | 0.203 0(3) | O3i—Co1—N1ⅱ | 96.38(10) |
| Co1ⅲ—O3 | 0.197 6(2) | N1ⅱ—Co1—N6 | 105.86(10) |
| Bond | d(D—H)/nm | d(H…A)/nm | d(D…A)/nm | Angle/(°) |
|---|---|---|---|---|
| C3—H3…O4ⅷ | 0.093 | 0.242 | 0.313 3(5) | 134 |
| C20—H20…O1ⅹ | 0.093 | 0.243 | 0.325 5(5) | 148 |
| C13—H13…N4ⅰ | 0.093 | 0.254 | 0.344 2(4) | 163 |
表3 Co-MOF中氢键的键长和键角数据
Table 3 Hydrogen bonds lengths and bond angles of Co-MOF
| Bond | d(D—H)/nm | d(H…A)/nm | d(D…A)/nm | Angle/(°) |
|---|---|---|---|---|
| C3—H3…O4ⅷ | 0.093 | 0.242 | 0.313 3(5) | 134 |
| C20—H20…O1ⅹ | 0.093 | 0.243 | 0.325 5(5) | 148 |
| C13—H13…N4ⅰ | 0.093 | 0.254 | 0.344 2(4) | 163 |
图1 Co-MOF中Co(Ⅱ)的配位环境图(对称码:(i) -1+x, y, z; (ⅱ) x, 0.5-y, -0.5+z; (ⅲ) 1+x, y, z; (ⅳ) x, 0.5-y, 0.5+z)
Fig 1 Coordination environment diagram of Co(Ⅱ) in Co-MOF (Symmetry codes: (i) -1+x, y, z; (ⅱ) x, 0.5-y, -0.5+z; (ⅲ) 1+x, y, z; (ⅳ) x, 0.5-y, 0.5+z)
图3 配合物的堆积图。(a)2D层状图;(b)错位面对面π—π堆积作用(对称码:(v)-x, -0.5+y, 0.5-z; (vi) -x, -y, 1-z);(c)π—π堆积3D图
Fig.3 Stacking diagram of the complex. (a) 2D planar structure; (b) offset face-to-face π—π stacking interactions (symmetry codes: (v) -x, -0.5+y, 0.5-z; (vi) -x, -y, 1-z); (c) 3D diagram of π—π stacking
图7 Co-MOF悬浊液随着Cr2O72-浓度变化的荧光光谱及低浓度下荧光猝灭线性关系
Fig.7 Fluorescence spectra of Co-MOF suspension changing with Cr2O72- concentration and the fluorescence quenching linearity relationship at low concentration
图8 Co-MOF悬浊液随着CrO42-浓度变化的荧光光谱及低浓度下荧光猝灭线性关系
Fig.8 Fluorescence spectra of Co-MOF suspension changing with CrO42- concentration and the fluorescence quenching linearity relationship at low concentration
图9 Co-MOF悬浊液随着S2O82-浓度变化的荧光光谱及低浓度下荧光猝灭线性关系
Fig.9 Fluorescence spectra of Co-MOF suspension changing with S2O82- concentration and the fluorescence quenching linearity relationship at low concentration
图10 Co-MOF悬浊液随着Fe3+浓度变化的荧光光谱及低浓度下荧光猝灭线性关系
Fig.10 Fluorescence spectra of Co-MOF suspension changing with Fe3+ concentration and the fluorescence quenching linearity relationship at low concentration
| [1] | ZHONG F Y, LI C Q, XIE Y B, et al. Titanium metal-organic framework nanorods for highly sensitive nitroaromatic explosives detection and nanomolar sensing of Fe3+ [J]. Journal of Solid State Chemistry, 2019, 278: 120892. |
| [2] | HE T, ZHANG Y Z, KONG X J, et al. Zr(Ⅳ)-based metal-organic framework with T-shaped ligand: unique structure, high stability, selective detection, and rapid adsorption of Cr2O7 2- in water[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16650-16659. |
| [3] | YAO Z Q, LI G Y, XU J, et al. A water-stable luminescent ZnII metal-organic framework as chemosensor for high-efficiency detection of CrVI-anions (Cr2O7 2- and CrO4 2-) in aqueous solution[J]. Chemistry-A European Journal, 2018, 24(13): 3192-3198. |
| [4] | HOUSE D A. Kinetics and mechanism of oxidations by peroxydisulfate[J]. Chemical Reviews, 1962, 62(3): 185-203. |
| [5] |
KIM Y W, LEE S M, SHIN S M, et al. Efficacy of sauchinone as a novel AMPK-activating lignan for preventing iron-induced oxidative stress and liver injury[J]. Free Radical Biology and Medicine, 2009, 47(7): 1082-1092.
DOI PMID |
| [6] | ZHENG Y, QIAO S Z. Metal-organic framework assisted synthesis of single-atom catalysts for energy applications[J]. National Science Review, 2018, 5(5): 626-627. |
| [7] | DU Y, YANG H Y, LIU R J, et al. A multi-responsive chemosensor for highly sensitive and selective detection of Fe3+, Cu2+, Cr2O7 2- and nitrobenzene based on a luminescent lanthanide metal-organic framework[J]. Dalton Transactions, 2020, 49(37): 13003-13016. |
| [8] | FABREGAT-CABELLO N, RODRÍGUEZ-GONZÁLEZ P, CASTILLO Á, et al. Fast and accurate procedure for the determination of Cr(Ⅵ) in solid samples by isotope dilution mass spectrometry[J]. Environmental Science & Technology, 2012, 46(22): 12542-12549. |
| [9] | DRINČIĆ A, ZULIANI T, ŠČANČAR J, et al. Determination of hexavalent Cr in river sediments by speciated isotope dilution inductively coupled plasma mass spectrometry[J]. Science of The Total Environment, 2018, 637: 1286-1294. |
| [10] | EL-NAGGAR M E, EL-NEWEHY M H, ALDALBAHI A, et al. Immobilization of anthocyanin extract from red-cabbage into electrospun polyvinyl alcohol nanofibers for colorimetric selective detection of ferric ions[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 105072. |
| [11] |
LOTFI ZADEH ZHAD H R, LAI R Y. Hexavalent chromium as an electrocatalyst in DNA sensing[J]. Analytical Chemistry, 2017, 89(24): 13342-13348.
DOI PMID |
| [12] | WILLIE S N, STURGEON R E. Determination of transition and rare earth elements in seawater by flow injection inductively coupled plasma time-of-flight mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(9): 1707-1716. |
| [13] | WOHLMANN W, NEVES V M, HEIDRICH G M, et al. Development of an electrothermal vaporizer for direct mercury determination in soil by inductively-coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 149: 222-228. |
| [14] | LI H L, EDDAOUDI M, O’KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759): 276-279. |
| [15] | YOU L-X, YAO S-X, ZHAO B-B, et al. Striking dual functionality of a novel Pd@Eu-MOF nanocatalyst in C(sp2)-C(sp2) bond-forming and CO2 fixation reactions[J]. Dalton Transactions, 2020, 49(19): 6368-6376. |
| [16] | SINGH M, PALAKKAL A S, PILLAI R S, et al. N-Functionality actuated improved CO2 adsorption and turn-on detection of organo-toxins with guest-induced fluorescence modulation in isostructural diamondoid MOFs[J]. Journal of Materials Chemistry C, 2021, 9(22): 7142-7153. |
| [17] | YU S, HU H C, LIU D C, et al. Structural and magnetic studies of six-coordinated Schiff base Dy(iii) complexes[J]. Inorganic Chemistry Frontiers, 2022, 9(12): 3059-3070. |
| [18] | CAI M R, QIN L Y, YOU L T, et al. Functionalization of MOF-5 with mono-substituents: effects on drug delivery behavior[J]. RSC Advances, 2020, 10(60): 36862-36872. |
| [19] | KINZHALOV M A, GRACHOVA E V, LUZYANIN K V. Tuning the luminescence of transition metal complexes with acyclic diaminocarbene ligands[J]. Inorganic Chemistry Frontiers, 2022, 9(3): 417-439. |
| [20] | YAN B, WU H C, MA P T, et al. Recent advances in rare earth Co-doped luminescent tungsten oxygen complexes[J]. Inorganic Chemistry Frontiers, 2021, 8(18): 4158-4176. |
| [21] | DENG W H, NARESH KUMAR P, LI W H, et al. Superprotonic conductivity of Ti-based MOFs with Brønsted acid-base pairs[J]. Inorganica Chimica Acta, 2020, 502: 119317. |
| [22] | ZHANG M X, LIN Q J, WU W G, et al. Isostructural MOFs with higher proton conductivity for improved oxygen evolution reaction performance[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16367-16375. |
| [23] | BAI Z X, LIU S C, CHENG G J, et al. High proton conductivity of MOFs-polymer composite membranes by phosphoric acid impregnation[J]. Microporous and Mesoporous Materials, 2020, 292: 109763. |
| [24] | HUANG Q Q, LIN Y J, ZHENG R, et al. Tunable electrical conductivity of a new 3D MOFs: Cu-TATAB[J]. Inorganic Chemistry Communications, 2019, 105: 119-124. |
| [25] | ABDELHAMEED R M, EMAM H E, ROCHA J, et al. Cu-BTC metal-organic framework natural fabric composites for fuel purification[J]. Fuel Processing Technology, 2017, 159: 306-312. |
| [26] | BHADRA B N, AHMED I, JHUNG S H. Remarkable adsorbent for phenol removal from fuel: functionalized metal-organic framework[J]. Fuel, 2016, 174: 43-48. |
| [27] | XU M Z, SONG N, QIU D D, et al. A porous and chemical stable Co(II)-based metal-organic framework for the selective fluorescence sensing of Fe3+ and tetracycline[J]. Journal of Solid State Chemistry, 2024, 332: 124562. |
| [28] | BAI W B, QIN G X, WANG J, et al. 2-Aminoterephthalic acid co-coordinated Co-MOF fluorescent probe for highly selective detection of the organophosphorus pesticides with p-nitrophenyl group in water systems[J]. Dyes and Pigments, 2021, 193: 109473. |
| [29] | LIU Y T, QIU Q, ZHANG X Y, et al. Tetra-imidazole functionalized pyrene for constructing Co-MOF and its application for sensing of cyanide ion[J]. Journal of Solid State Chemistry, 2021, 300: 122258. |
| [30] | WU G M, LI W J, YANG L B, et al. A dual-function cobalt metal-organic framework for high proton conduction and selective luminescence sensing of histidine[J]. Journal of the Electrochemical society, 2022, 169(1): 014512. |
| [31] | LI Z J, JU Y, WU X L, et al. Topological control of metal-organic frameworks toward highly sensitive and selective detection of chromate and dichromate[J]. Inorganic Chemistry Frontiers, 2023, 10(6): 1721-1730. |
| [32] | WANG S B, SUN B, SUN J, et al. Lanthanide metal-organic frameworks based on planar π-conjugated ligands for white light emission, temperature and chemical sensing[J]. Dyes and Pigments, 2022, 202: 110256. |
| [33] | LIU X Z, CHEN H T, FAN L M, et al. Syntheses, crystal structures, and luminescence properties of four coordination polymers based on 1, 3, 5-tris (imidazol-1-yl)benzene[J]. Zeitschrift Für Anorganische und Allgemeine Chemie, 2017, 643(2): 192-197. |
| [34] | SU Z, XU J, FAN J, et al. Synthesis, crystal structure, and photoluminescence of coordination polymers with mixed ligands and diverse topologies[J]. Crystal Growth & Design, 2009, 9(6): 2801-2811. |
| [35] | XUE Z Z, SHENG T L, WANG Y L, et al. A series of d10 coordination polymers constructed with a rigid tripodal imidazole ligand and varied polycarboxylates: syntheses, structures and luminescence properties[J]. CrystEngComm, 2015, 17(9): 2004-2012. |
| [36] | XU T Y, WANG H, LI J M, et al. A water-stable luminescent Zn(II) coordination polymer based on 5-sulfosalicylic acid and 1, 4-bis(1H-imidazol-1-yl)benzene for highly sensitive and selective sensing of Fe3+ ion[J]. Inorganica Chimica Acta, 2019, 493: 72-80. |
| [37] | XU T Y, LI J M, HAN Y H, et al. A new 3D four-fold interpenetrated dia-like luminescent Zn(ii)-based metal-organic framework: the sensitive detection of Fe3+, Cr2O7 2-, and CrO4 2- in water, and nitrobenzene in ethanol[J]. New Journal of Chemistry, 2020, 44(10): 4011-4022. |
| [38] | XU T Y, NIE H J, LI J M, et al. Luminescent Zn(II)/Cd(II) coordination polymers based on 1-(tetrazol-5-H)-3, 5-bis(1-triazole)benzene for sensing Fe3+, Cr2O7 2-, and CrO4 2- in water[J]. Journal of Solid State Chemistry, 2020, 287: 121342. |
| [39] | XU T Y, NIE H J, LI J M, et al. Highly selective sensing of Fe3+/Hg2+ and proton conduction using two fluorescent Zn(ii) coordination polymers[J]. Dalton Transactions, 2020, 49(32): 11129-11141. |
| [40] | 杨 轶, 周子鹏, 余思冀, 等. 基于咪唑衍生物和间苯二甲酸配体的Cd(Ⅱ)配合物的合成、结构及性能[J]. 南京理工大学学报, 2020, 44(1): 100-106. |
| YANG Y, ZHOU Z P, YU S J, et al. Synthesis, structure and fluorescence properties of a Cd(Ⅱ) complex based on imidazole derivative and 1, 3-benzenedicarboxylic acid[J]. Journal of Nanjing University of Science and Technology, 2020, 44(1): 100-106 (in Chinese). | |
| [41] | 董顺芳. 基于bpdb和间苯二甲酸及其衍生物构筑的配位化合物合成、结构及性质研究[D]. 昆明: 云南大学, 2016. |
| DONG S F. Synthesis, structure and properties of coordination compounds based on bpdb and m-phthalic acid and its derivatives[D]. Kunming: Yunnan University, 2016 (in Chinese). | |
| [42] | 滑继爱. 基于1, 3, 5-三(1-咪唑基)苯配位聚合物的合成及性质研究[D]. 南京: 南京大学, 2015. |
| HUA J A . Synthesis and properties of coordination polymers based on 1, 3, 5- tris (1- imidazolyl) benzene[D]. Nanjing: Nanjing University, 2015 (in Chinese). | |
| [43] | PAN Z R, SHI Z Z, GAO X J, et al. Two luminescent Zn(II) metal-organic frameworks for exceptionally selective detection of picric acid[J]. Inorganic Chemistry Communications, 2017, 86: 290-294. |
| [44] | XIA Y P, WANG C X, FENG R, et al. A novel double-walled Cd(II) metal-organic framework as highly selective luminescent sensor for Cr2O7 2- anion[J]. Polyhedron, 2018, 153: 110-114. |
| [45] | CUI J N, ZHU H, CUI G H. A water-stable 3D Zn(Ⅱ) luminescent coordination polymer for highly sensitive and selective sensing of acetylacetone and Fe3+ ion[J]. Inorganic Chemistry Communications, 2021, 129: 108654. |
| [46] | HASI Q M, SU X H, MU X T, et al. Synthesis, crystal structures and selective luminescence sensing property of Zn(II) coordination polymers based on semi-rigid tricarboxylic acid ligands[J]. Journal of Molecular Structure, 2022, 1263: 133162. |
| [47] | WU Y D, LIU D Y, LIN M H, et al. Zinc(Ⅱ)-based coordination polymer encapsulated Tb3+ as a multi-responsive luminescent sensor for Ru3+, Fe3+, CrO4 2-, Cr2O7 2- and MnO4 – [J]. RSC Advances, 2020, 10(10): 6022-6029. |
| [1] | 金雨欣, 于海丽, 王钰晴, 谢龙琛, 田洪瑞, 陈宝宽. 双核VIV配合物的合成、晶体结构及磁性研究[J]. 人工晶体学报, 2025, 54(6): 1021-1026. |
| [2] | 许同桃, 万洪善, 杨甜星, 高敏, 王冲. 两个基于4-氨基-2,6-二甲氧基嘧啶的铜(Ⅱ)配合物的合成、表征与性质[J]. 人工晶体学报, 2025, 54(4): 684-692. |
| [3] | 李佳, 冯婧, 苗萌. 基于混合配体的两个同构配合物的晶体结构和磁性研究[J]. 人工晶体学报, 2025, 54(4): 693-699. |
| [4] | 徐娅蓉, 赵九州, 赵成兄, 梁毅农, 孙赞. 基于胡椒酸/4,4′-联吡啶的Zn配位聚合物的合成、结构及Hirshfeld分析[J]. 人工晶体学报, 2025, 54(1): 115-120. |
| [5] | 王馨莹, 乔得聪, 潘会宾, 高霞, 卢久富. 混合配体构筑的Cd(Ⅱ)基荧光传感有机骨架材料及其性能研究[J]. 人工晶体学报, 2025, 54(1): 126-132. |
| [6] | 李苗, 郑易萌, 孙已婷, 毛玉玲, 朱百丽, 崔术新. 基于4,5-咪唑二羧酸配体镉配位化合物的制备及性能[J]. 人工晶体学报, 2025, 54(1): 121-125. |
| [7] | 郑权, 刘学超, 王浩, 朱新峰, 潘秀红, 陈锟, 邓伟杰, 汤美波, 徐浩, 吴鸿辉, 金敏. 铝掺杂对硒化铟晶体结构与性能的影响[J]. 人工晶体学报, 2024, 53(9): 1528-1535. |
| [8] | 焦思慧, 吴红萍, 俞洪伟. CsBa2ScB8O16:首例结构中同时含有零维[B3O6]基元和一维B—O链的稀土硼酸盐[J]. 人工晶体学报, 2024, 53(9): 1550-1559. |
| [9] | 吴苗, 宋娟, 周云龙, 任传清. 基于吡嗪羧酸配体的Zn(II)配合物的合成、晶体结构及荧光性能研究[J]. 人工晶体学报, 2024, 53(9): 1576-1582. |
| [10] | 安航宜, 黄艳嬉, 王爱荣, 王晓丽, 李家明, 史忠丰. 新型三维Ni(II)配合物的合成、晶体结构及对水中Fe3+、CrO2-4与Cr2O2-7的检测[J]. 人工晶体学报, 2024, 53(9): 1599-1607. |
| [11] | 储冬冬, 杨志华, 潘世烈. 数据驱动的新型非线性光学材料理论设计研究进展[J]. 人工晶体学报, 2024, 53(9): 1475-1493. |
| [12] | 史燚威, 杨瑞杰, 张迎春, 王鑫, 王敏, 宋志国. 4,4′-联吡啶桥联的钴配位聚合物的合成、表征及量子化学计算[J]. 人工晶体学报, 2024, 53(9): 1583-1590. |
| [13] | 杨玲, 苏斌斌, 王宏胜, 李金钊, 李叶盛, 陈睿. La3+取代的纳米尺寸砷钨氧簇的合成、晶体结构及光催化性质研究[J]. 人工晶体学报, 2024, 53(9): 1591-1598. |
| [14] | 程佳佳, 吴梦琪, 杨敏, 王丽梅, 魏荣敏. [CoⅢ(DIEN)(N3)3]配合物的合成、晶体结构及量子化学研究[J]. 人工晶体学报, 2024, 53(8): 1409-1415. |
| [15] | 毛云虹, 赵春深. 6-氟-4-羟基-3-氧代-3,4-二氢喹喔啉-1(2H)-羧酸叔丁酯的合成、晶体结构及抗肿瘤活性研究[J]. 人工晶体学报, 2024, 53(7): 1257-1268. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS