[1] OISAKI K, LI Q W, FURUKAWA H, et al. A metal-organic framework with covalently bound organometallic complexes[J]. Journal of the American Chemical Society, 2010, 132(27): 9262-9264. [2] KITAGAWA S, KITAURA R, NORO S I. Functional porous coordination polymers[J]. Angewandte Chemie (International Edition), 2004, 43(18): 2334-2375. [3] SONG D H, JIANG F L, YUAN D Q, et al. Optimizing sieving effect for CO2 capture from humid air using an adaptive ultramicroporous framework[J]. Small, 2023, 19(44): e2302677. [4] ZHENG F, CHEN R D, DING Z X, et al. Interlayer symmetry control in flexible-robust layered metal-organic frameworks for highly efficient C2H2/CO2 separation[J]. Journal of the American Chemical Society, 2023, 145(36): 19903-19911. [5] DHAKSHINAMOORTHY A, NAVALÓN S, PRIMO A, et al. Selective gas-phase hydrogenation of CO2 to methanol catalysed by metal-organic frameworks[J]. Angewandte Chemie (International Edition), 2024, 63(3): e202311241. [6] LI F, KAN J L, YAO B J, et al. Synthesis of chiral covalent organic frameworks via asymmetric organocatalysis for heterogeneous asymmetric catalysis[J]. Angewandte Chemie (International Edition), 2022, 61(25): e202115044. [7] MI X N, SHENG D F, YU Y E, et al. Tunable light emission and multiresponsive luminescent sensitivities in aqueous solutions of two series of lanthanide metal-organic frameworks based on structurally related ligands[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 7914-7926. [8] DU R, WU Y F, YANG Y C, et al. Porosity engineering of MOF-based materials for electrochemical energy storage[J]. Advanced Energy Materials, 2021, 11(20): 2100154. [9] ZHOU Y, MOORTHY S, WEI X Q, et al. A porous cobalt(ii)-organic framework exhibiting high room temperature proton conductivity and field-induced slow magnetic relaxation[J]. Dalton Transactions, 2023, 52(4): 909-918. [10] WAN Y, ZHANG Y L, ZHANG Q, et al. Cobalt(ii) coordination polymers with single-ion magnet property[J]. CrystEngComm, 2024, 26(28): 3771-3782. [11] WU X Q, QIN Y, YANG Z Y, et al. Construction of Co-MOF electrochemical sensor and application of it in recognizing and distinguishing naphthylamine isomers[J]. Journal of Molecular Structure, 2025, 1321: 139677. [12] MANDAL T N, KARMAKAR A, SHARMA S, et al. Metal-organic frameworks (MOFs) as functional supramolecular architectures for anion recognition and sensing[J]. The Chemical Record, 2018, 18(2): 154-164. [13] LIU B, ZHOU H F, HOU L, et al. Functionalization of MOFs via a mixed-ligand strategy: enhanced CO2 uptake by pore surface modification[J]. Dalton Transactions, 2018, 47(15): 5298-5303. [14] ABID D, MJEJRI I, JABALLI R, et al. Exploring the optical and energetic properties of a Co(II)-based mixed ligand MOF[J]. Inorganic Chemistry, 2024, 63(14): 6152-6160. [15] TIAN Z F, YANG S Y, ZHU J L, et al. Topological and magnetic regulation in three cobalt(ii) coordination polymers constructed using a mixed bipyrimidine-tetracarboxylate strategy[J]. CrystEngComm, 2024, 26(41): 5933-5940. [16] XU C G, LUO R, ZHANG D M, et al. Mn(II)/Co(II)-based metal-organic frameworks assembled by 5, 5′-(1, 4-xylylenediamino) diisophthalic acid and various nitrogen-containing ligands for photocatalytic and magnetic properties[J]. Journal of Solid State Chemistry, 2021, 303: 122535. [17] ZHANG Y J, GAO L L, ZHOU W D, et al. Synthesis and magnetic properties of two Mn-based coordination polymers constructed by a mixed-ligand strategy[J]. CrystEngComm, 2020, 22(42): 7123-7128. [18] SUN M Y, CHEN D M. A rare high-connected metal-organic framework with an unusual topological net: synthesis, crystal structure and magnetic properties[J]. Inorganic Chemistry Communications, 2017, 82: 61-63. [19] 李 波, 沈 红, 王霏宇, 等. 基于混合配体的镍(Ⅱ)配合物的晶体结构、荧光性质和磁性研究[J]. 人工晶体学报, 2022, 51(11): 1952-1957. LI B, SHEN H, WANG F Y, et al. Crystal structure, fluorescent properties and magnetism of Ni (Ⅱ) complex based on mixed ligands[J]. Journal of Synthetic Crystals, 2022, 51(11): 1952-1957 (in Chinese). [20] ISBJAKOWA A S, GRIGORIEV M S, GOLUBEV D V, et al. Synthesis and characterization of acetylurea complexes with rare-earth metal halides: polymorphism of the praseodymium complexes[J]. Journal of Molecular Structure, 2020, 1201: 127141. |