Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (4): 617-628.DOI: 10.16553/j.cnki.issn1000-985x.2024.0176
• Research Articles • Previous Articles Next Articles
ZHANG Jiaqi, LIN Xueling, TIAN Wenhu, MA Wenjie, ZHANG Xiu, MA Xiaowei, ZHU Qiaoping, HAO Rui, PAN Fengchun
Received:
2024-08-13
Online:
2025-04-15
Published:
2025-04-28
CLC Number:
ZHANG Jiaqi, LIN Xueling, TIAN Wenhu, MA Wenjie, ZHANG Xiu, MA Xiaowei, ZHU Qiaoping, HAO Rui, PAN Fengchun. Effect of Strain on Optical Properties of Si Doped A-TiO2 Studied by the First-Principles[J]. Journal of Synthetic Crystals, 2025, 54(4): 617-628.
[1] SCHLOEGL R. Fuel for thought[J]. Nature Materials, 2008, 7(10): 772-774. [2] ULMER U, DINGLE T, DUCHESNE P N, et al. Fundamentals and applications of photocatalytic CO2 methanation[J]. Nature Communications, 2019, 10(1): 3169. [3] WU H, TAN H L, TOE C Y, et al. Photocatalytic and photoelectrochemical systems: similarities and differences[J]. Advanced Materials, 2020, 32(18): 1904717. [4] LI R G, ZHANG F X, WANG D E, et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4[J]. Nature Communications, 2013, 4(1): 1432. [5] WU Y A, MCNULTY I, LIU C, et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol[J]. Nature Energy, 2019, 4(11): 957-968. [6] HITOKI G, ISHIKAWA A, TAKATA T, et al. Ta3N5 as a novel visible light-driven photocatalyst (λ<600 nm)[J]. Chemistry Letters, 2002, 31(7): 736-737. [7] MARTIN D J, UMEZAWA N, CHEN X W, et al. Facet engineered Ag3PO4 for efficient water photooxidation[J]. Energy & Environmental Science, 2013, 6(11): 3380-3386. [8] THOMPSON T L, YATES J T Jr. Surface science studies of the photoactivation of TiO2: new photochemical processes[J]. Chemical Reviews, 2006, 106(10): 4428-4453. [9] FUJISHIMA A, ZHANG X T, TRYK D A. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Reports, 2008, 63(12): 515-582. [10] KAMAT P V. Semiconductor surface chemistry as holy grail in photocatalysis and photovoltaics[J]. Accounts of Chemical Research, 2017, 50(3): 527-531. [11] CHEN X B, LIU L, YU P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750. [12] ZHU J, FAN F T, CHEN R T, et al. Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst[J]. Angewandte Chemie (International Ed), 2015, 54(31): 9111-9114. [13] YU J G, LOW J, XIAO W, et al. Enhanced photocatalytic CO2-reduction activity of anataseTiO2 by coexposed{001}and{101}facets[J]. Journal of the American Chemical Society, 2014, 136(25): 8839-8842. [14] KUSAKA R, NIHONYANAGI S, TAHARA T. The photochemical reaction of phenol becomes ultrafast at the air-water interface[J]. Nature Chemistry, 2021, 13(4): 306-311. [15] WANG D Y, LIN H C, YEN C C. Influence of metal plasma ion implantation on photo-sensitivity of anatase TiO2 thin films[J]. Thin Solid Films, 2006, 515(3): 1047-1052. [16] LEYLAND N S, PODPORSKA-CARROLL J, BROWNE J, et al. Highly efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections[J]. Scientific Reports, 2016, 6: 24770. [17] SOOD S, UMAR A, MEHTA S K, et al. Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds[J]. Journal of Colloid and Interface Science, 2015, 450: 213-223. [18] MOMENI M M. Dye-sensitized solar cells based on Cr-doped TiO2 nanotube photoanodes[J]. Rare Metals, 2017, 36(11): 865-871. [19] KONG L N, WANG C H, WAN F X, et al. Transparent Nb-doped TiO2 films with the [001] preferred orientation for efficient photocatalytic oxidation performance[J]. Dalton Transactions, 2017, 46(44): 15363-15372. [20] GOGOI D, NAMDEO A, GOLDER A K, et al. Ag-doped TiO2 photocatalysts with effective charge transfer for highly efficient hydrogen production through water splitting[J]. International Journal of Hydrogen Energy, 2020, 45(4): 2729-2744. [21] KUMAR S G, RAO K S R K. Comparison of modification activity of metal oxide semiconductors (TiO2, WO3, and ZnO)[J]. Applied Surface Science, 2017, 391:124-148. [22] HOU X H, WANG C W, ZHU W D, et al. Preparation of nitrogen-doped anatase TiO2 nanoworm/nanotube hierarchical structures and its photocatalytic effect[J]. Solid State Sciences, 2014, 29: 27-33. [23] LI M, XING Z P, JIANG J J, et al. In-situ Ti3+/S doped high thermostable anatase TiO2 nanorods as efficient visible-light-driven photocatalysts[J]. Materials Chemistry and Physics, 2018, 219: 303-310. [24] BAO N, WEI Z T, MA Z H, et al. Si-doped mesoporous TiO2 continuous fibers: preparation by centrifugal spinning and photocatalytic properties[J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 129-136. [25] YAN X L, HE J, EVANS D G, et al. Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors[J]. Applied Catalysis B: Environmental, 2005, 55(4): 243-252. [26] CHEN C L, WEI Y L, YUAN G Z, et al. Synergistic effect of Si doping and heat treatments enhances the photoelectrochemical water oxidation performance of TiO2 nanorod arrays[J]. Advanced Functional Materials, 2017, 27(31): 1701575. [27] SHI W M, CHEN Q F, XU Y, et al. Investigation of the silicon concentration effect on Si-doped anatase TiO2 by first-principles calculation[J]. Journal of Solid State Chemistry, 2011, 184(8): 1983-1988. [28] 顾培夫, 郑臻荣, 赵永江, 等. TiO2和SiO2薄膜应力的产生机理及实验探索[J]. 物理学报, 2006, 55(12): 645905. GU P F, ZHENG Z R, ZHAO Y J, et al. Study on the mechanism and measurement of stress of TiO2 and SiO2 thin-films[J]. Acta Physica Sinica, 2006, 55(12): 645905 (in Chinese). [29] 黄诗浩, 李 成, 陈城钊, 等. N型掺杂应变Ge发光性质[J]. 物理学报, 2012, 61(3): 036202. HUANG S H, LI C, CHEN C Z, et al. The optical property of tensile-strained n-type doped Ge[J]. Acta Physica Sinica, 2012, 61(3): 036202 (in Chinese). [30] 王 娜, 许会芳, 杨秋云, 等. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究[J]. 物理学报, 2022, 71(20): 207102. WANG N, XU H F, YANG Q Y, et al. First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer[J]. Acta Physica Sinica, 2022, 71(20): 207102 (in Chinese). [31] 孙婷钰, 吴 量, 何贤娟, 等. 应变和电场对Ga2SeTe/In2Se3异质结电子结构和光学性质的影响[J]. 物理学报, 2023, 73(7): 076301. SUN T Y, WU L, HE X J, et al. Effect of strain and electric field on electronic structure and optical properties of Ga2SeTe/In2Se3 heterojunction[J]. Acta Physica Sinica, 2023, 72(7): 076301 (in Chinese). [32] LIU G, YANG H G, PAN J, et al. Titanium dioxide crystals with tailored facets[J]. Chemical Reviews, 2014, 114(19): 9559-9612. [33] SCANLON D O, DUNNILL C W, BUCKERIDGE J, et al. Band alignment of rutile and anatase TiO2[J]. Nature Materials, 2013, 12: 798-801. [34] BARNARD A S, ZAPOL P, CURTISS L A. Modeling the morphology and phase stability of TiO2 nanocrystals in water[J]. Journal of Chemical Theory and Computation, 2005, 1(1): 107-116. [35] YANG H G, SUN C H, QIAO S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature, 2008, 453(7195): 638-641. [36] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23): 13244-13249. [37] TANG H, LÉVY F, BERGER H, et al. Urbach tail of anatase TiO2[J]. Physical Review B, 1995, 52(11): 7771-7774. [38] CHADI D J. Special points for Brillouin-zone integrations[J]. Physical Review B, 1977, 16(4): 1746-1747. [39] PACK J D, MONKHORST H J. Special points for Brillouin-zone integrations: a reply[J]. Physical Review B, 1977, 16(4): 1748-1749. [40] LINPENG X, KARIN T, DURNEV M, et al. Optical spin control and coherence properties of acceptor bound holes in strained GaAs[J]. Physical Review B, 2021, 103: 115412. [41] 王少霞, 赵旭才, 潘多桥, 等. 过渡金属(Cr, Mn, Fe, Co)掺杂对TiO2磁性影响的第一性原理研究[J]. 物理学报, 2020, 69(19): 197101. WANG S X, ZHAO X C, PAN D Q, et al. First principle study of influence of transition metal (Cr, Mn, Fe, Co) doping on magnetism of TiO2[J]. Acta Physica Sinica, 2020, 69(19): 197101 (in Chinese). [42] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究[J]. 物理学报, 2015, 64(22): 224218. PAN F C, LIN X L, CHEN H M. Electronic structure and optical properties of C doped rutile TiO2: the first-principles calculations[J]. Acta Physica Sinica, 2015, 64(22): 224218 (in Chinese). [43] 潘凤春, 林雪玲, 曹志杰, 等. Fe, Co, Ni掺杂GaSb的电子结构和光学性质[J]. 物理学报, 2019, 68(18): 184202. PAN F C, LIN X L, CAO Z J, et al. Electronic structures and optical properties of Fe, Co, and Ni doped GaSb[J]. Acta Physica Sinica, 2019, 68(18): 184202 (in Chinese). [44] 王志伟, 郝永芹, 李 洋, 等. GaSb基PECVD法制备SiO2薄膜的应力研究[J]. 发光学报, 2018, 39(7): 935-941. WANG Z W, HAO Y Q, LI Y, et al. Study of SiO2 thin films stress deposited on GaSb substrate by PECVD[J]. Chinese Journal of Luminescence, 2018, 39(7): 935-941 (in Chinese). [45] GOEL S, ANH L D, OHYA S, et al. Ferromagnetic resonance and control of magnetic anisotropy by epitaxial strain in the ferromagnetic semiconductor (Ga0.8, Fe0.2)Sb at room temperature[J]. Physical Review B, 2019, 99: 014431. [46] PAN F C, LIN X L, WANG X M. Strain-tuned magnetic properties in (Ga, Fe)Sb: first-principles study[J]. Chinese Physics B, 2021, 30(9): 096105. [47] PAN F, LIN X L, WANG X M. The magnetic and optical properties of Zr doped GaSb: the first-principles calculation study[J]. Japanese Journal of Applied Physics, 2021, 60: 063001. [48] 潘凤春, 林雪玲, 王旭明. 应变对(Ga, Mo)Sb磁学和光学性质影响的理论研究[J]. 物理学报, 2022, 71(9): 096103. PAN F C, LIN X L, WANG X M. First-principles study of strain effect on magnetic and optical properties in (Ga, Mo)Sb[J]. Acta Physica Sinica, 2022, 71(9): 096103 (in Chinese). [49] 刘晓莹, 黄海深, 孙 丽, 等. 二维MXene材料CrVCF2的电子性质和磁性的第一性原理研究[J]. 人工晶体学报, 2024, 53(8): 1386-1393. LIU X Y, HUANG H S, SUN L, et al. First-principles study on the electronic and magnetic properties of MXene 2D material CrVCF2[J]. Journal of Synthetic Crystals, 2024, 53(8): 1386-1393 (in Chinese). [50] 秦彦军, 张建强, 杨慧雅, 等. 单轴应变对本征和N掺杂4H-SiC电子结构的影响[J]. 原子与分子物理学报, 2025, 42(3): 179-185. QIN Y J, ZHANG J Q, YANG H Y, et al. Effect of uniaxial strain on electronic structure of intrinsic and N-doped 4H-SiC[J]. Journal of Atomic and Molecular Physics, 2025, 42(3): 179-185 (in Chinese). [51] 黄 昆. 固体物理学[M]. 1版. 北京: 高等教育出版社, 1988. HUANG K. Solid state physics[M]. 1 st ed. Beijing: Higher Education Press, 1988 (in Chinese). [52] 温淑敏, 姚世伟, 赵春旺, 等. 应变对纤锌矿结构GaN电子结构及光学性质的影响[J]. 计算物理, 2020, 37(1): 119-126. WEN S M, YAO S W, ZHAO C W, et al. Effect of strain on electronic structure and optical properties of wurtzite GaN[J]. Chinese Journal of Computational Physics, 2020, 37(1): 119-126 (in Chinese). [53] HOU B W, ZHANG Y M, ZHANG H, et al. Room temperature bound excitons and strain-tunable carrier mobilities in Janus monolayer transition-metal dichalcogenides [J]. Journal of Physical Chemistry Letters, 2020, 11: 3116. [54] VU T, NGUYEN C, PHUC H, et al. Theoretical prediction of electronic, transport, optical, and thermoelectric properties of Janus monolayers In2XO (X=S, Se, Te)[J]. Physical Review B, 2021, 103:085422. [55] 林雪玲, 陈治鹏, 潘凤春, 等. Gd掺杂Li4Ti5O12电化学特性的第一性原理研究[J]. 宁夏大学学报(自然科学版), 2016, 37(3): 332-338. LIN X L, CHEN Z P, PAN F C, et al. Study on the first principle of Gd-doped Li4Ti5O12 electrochemical characteristics[J]. Journal of Ningxia University (Natural Science Edition), 2016, 37(3): 332-338 (in Chinese). [56] 邓鹏星, 文志勤, 马 博, 等. 体积应变对立方钛酸铅电子结构和光学性质的影响[J]. 人工晶体学报, 2022, 51(1): 85-91. DENG P X, WEN Z Q, MA B, et al. Effect of volume strain on electronic structure and optical properties of cubic lead titanate[J]. Journal of Synthetic Crystals, 2022, 51(1): 85-91 (in Chinese). [57] 陈卓唯, 刘文亮. 应变诱导二维SnSe/SnS范德华异质结的光电性质[J]. 湘潭大学学报(自然科学版), 2024, 46(4): 69-77. CHEN Z W, LIU W L. Strain-induced electronic and optical properties of two-dimensional SnSe/SnS van der Waals heterostructure[J]. Journal of Xiangtan University (Natural Science Edition), 2024, 46(4): 69-77 (in Chinese). [58] CIANCI S, BLUNDO E, TUZI F, et al. Strain engineering of the transition metal dichalcogenide chalcogen-alloy WSSe[J]. Journal of Applied Physics, 2024, 135(24): 244304. [59] WAKABAYASHI Y K, KOBAYASHI M, SEKI Y, et al. SrRuO3 under tensile strain: thickness-dependent electronic and magnetic properties[J]. Journal of Applied Physics, 2024, 136(4): 043907. [60] 吴星彤, 熊启杭, 岑伟富, 等. 应变对Mo2C(001)表面电子结构及光学性质的影响[J]. 人工晶体学报, 2022, 51(12): 2063-2070. WU X T, XIONG Q H, CEN W F, et al. Effects of strain on electronic structure and optical properties of Mo2C(001) surface[J]. Journal of Synthetic Crystals, 2022, 51(12): 2063-2070 (in Chinese). |
[1] | MIN Yueqi, XIE Wenqin, XIE Liang, AN Kang. Optoelectronic Properties of CsPbX3 (X=Cl, Br, I) Regulated by Pd Doping [J]. Journal of Synthetic Crystals, 2025, 54(4): 605-616. |
[2] | LI Pengcheng, ZHOU Jun, WANG Weigang, WU Kunyao, LI Zhao. Preparation of Li2Mg3TiO6:Eu3+ Red Phosphors and Its Application in White LED [J]. Journal of Synthetic Crystals, 2025, 54(4): 643-651. |
[3] | ZHA Xianhu, WAN Yuxi, ZHANG Daohua. Research Progress on p-Type Conduction of β Phase Gallium Oxide [J]. Journal of Synthetic Crystals, 2025, 54(2): 177-189. |
[4] | ZHANG Ningning, YU Haitao, LIU Yanyan, XUE Dan. Electronic Structure and Optical Property of 4d Transition Metal Doped Monolayer WS2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 77-84. |
[5] | WANG Yunjie, HE Zhihao, DING Jiafu, SU Xin. Influence of Cations on the Structural Framework and the Origin of Birefringence in X2(PO4)2 (X=Ba, Pb) and XPO4 (X=Y, Bi) [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 85-94. |
[6] | DING Jiafu, HE Zhihao, WANG Yunjie, SU Xin. First-Principles Study on the Regulation of Optical Properties of Gallium, Indium, and Thallium Phosphates Through Sulfur Substitution [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 95-106. |
[7] | JIAO Sihui, WU Hongping, YU Hongwei. CsBa2ScB8O16: the First Rare-Earth Borate Simultaneously Containing Zero-Dimensional [B3O6] Units and One-Dimensional B—O Chains [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1550-1559. |
[8] | MO Qiuyan, OU Manlin, ZHANG Song, JING Tao, WU Jiayin. First-Principles Study on the Effect of VI Group Elements Modification on the Electronic Properties of Two-Dimensional AlN [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1620-1628. |
[9] | ZHU Zhenyu, JIA Zhigang, DONG Hailiang, XU Bingshe. Analysis of the Role of Periodic Reflective Structures and Electron Blocking Layer Setup in Micro-Nano GaN-Based VCSEL [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1337-1343. |
[10] | SUN Liang, ZHANG Yu, WANG Qun. Electronic Structure and Magnetic Properties of the Bulk and (001) Surface of Heusler Alloy Mn2LiGe [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1378-1385. |
[11] | LIU Xiaoying, HUANG Haishen, SUN Li, PAN Mengmei, SHANG Zhenzhen. First-Principles Study on the Electronic and Magnetic Properties of MXene 2D Material CrVCF2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1386-1393. |
[12] | DONG Yujuan, LIU Zhaojiang, ZHU Qirui. Preparation of Yellow-Emitting Pure Zn3V2O8 Phosphors and Its Optical Properties [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1416-1421. |
[13] | LING Hao, XU Le, CHEN Sixian, TANG Yuanzhi, SUN Haibin, GUO Xue, FENG Yurun, HU Qiangqiang. Growth and Optical Properties of Large Size CsCu2I3 Single Crystal by Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1121-1126. |
[14] | LI Haoqing, SU Yu. Phase Field Study on Domain Structure Evolution of BaTiO3 Nano Single Crystal Thin Films under Applied Electric Field [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1136-1149. |
[15] | WU Shiting, YU Chunyan, FANG Jiaqing, XU Yang, ZHAI Guangmei. Intermediate Shell Structure Regulation and Optical Properties of ZnSe Based Blue Quantum Dots [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1160-1169. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 17
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 31
|
|
|||||||||||||||||||||||||||||||||||||||||||||