Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (5): 784-792.DOI: 10.16553/j.cnki.issn1000-985x.2024.0277
• Research Articles • Previous Articles Next Articles
YANG Wenwen1,2(), LU Wei1, XIE Hui1, LIU Gang1, LYU Xinyu1,2, BAI Yihan1,2, LI Chenhui1, PAN Jiaoqing3, ZHAO Youwen1, SHEN Guiying1,2(
)
Received:
2024-11-06
Online:
2025-05-15
Published:
2025-05-28
CLC Number:
YANG Wenwen, LU Wei, XIE Hui, LIU Gang, LYU Xinyu, BAI Yihan, LI Chenhui, PAN Jiaoqing, ZHAO Youwen, SHEN Guiying. Growth and Performance of Low-Dislocation 6-Inch GaSb Single Crystal[J]. Journal of Synthetic Crystals, 2025, 54(5): 784-792.
Material | Physical property | Value |
---|---|---|
GaSb melt | Melting temperature/K | 985 |
Density/(kg | 5 720 | |
Heat conductivity/(W | 17.1 | |
Specific heat/(J∙K-1∙kg-1) | 328 | |
Dynamic viscosity/(Pa | 2.31×10-3 | |
Emissivity | 0.6 | |
Latent heat/(J | 2.606×105 | |
GaSb crystal | Heat conductivity/(W | 4.57 |
Density/(kg | 5 630 | |
Emissivity | 0.6 | |
Specific heat/(J∙K-1∙kg-1) | 266 | |
Graphite | Heat conductivity/(W | 58 |
Density/(kg | 2 230 | |
Emissivity | 0.7 | |
Specific heat/(J∙K-1∙kg-1) | 720 | |
Steel | Heat conductivity/(W | 10 |
Density/(kg | 7 850 | |
Emissivity | 0.5 | |
Specific heat/(J∙K-1∙kg-1) | 500 | |
Felt | Heat conductivity/(W | 0.16 |
Density/(kg | 120 | |
Emissivity | 0.7 | |
Specific heat/(J∙K-1∙kg-1) | 200 | |
Quartz | Heat conductivity/(W | 2 |
Density/(kg | 2 650 | |
Emissivity | 0.85 | |
Specific heat/(J∙K-1∙kg-1) | 1 232 |
Table 1 Physical properties of the materials used in simulation
Material | Physical property | Value |
---|---|---|
GaSb melt | Melting temperature/K | 985 |
Density/(kg | 5 720 | |
Heat conductivity/(W | 17.1 | |
Specific heat/(J∙K-1∙kg-1) | 328 | |
Dynamic viscosity/(Pa | 2.31×10-3 | |
Emissivity | 0.6 | |
Latent heat/(J | 2.606×105 | |
GaSb crystal | Heat conductivity/(W | 4.57 |
Density/(kg | 5 630 | |
Emissivity | 0.6 | |
Specific heat/(J∙K-1∙kg-1) | 266 | |
Graphite | Heat conductivity/(W | 58 |
Density/(kg | 2 230 | |
Emissivity | 0.7 | |
Specific heat/(J∙K-1∙kg-1) | 720 | |
Steel | Heat conductivity/(W | 10 |
Density/(kg | 7 850 | |
Emissivity | 0.5 | |
Specific heat/(J∙K-1∙kg-1) | 500 | |
Felt | Heat conductivity/(W | 0.16 |
Density/(kg | 120 | |
Emissivity | 0.7 | |
Specific heat/(J∙K-1∙kg-1) | 200 | |
Quartz | Heat conductivity/(W | 2 |
Density/(kg | 2 650 | |
Emissivity | 0.85 | |
Specific heat/(J∙K-1∙kg-1) | 1 232 |
Fig.3 Simulation results of thermal field characteristics for 6-inch GaSb growth. (a) Temperature distribution and heat flux direction in the crystallization zone; (b) variation of the solid-liquid interface deflection Y with the radial position X of the crystal under different growth lengths
Fig.5 Variation of the solid-liquid interface deflection Y with the radial position X of the crystal under different pulling rates (a) and crystal rotation rates (b), as well as the melt convection at crystal rotation rates of 2 r/min (c) and 6 r/min (d)
1 | MÜLLER R, GRAMICH V, WAURO M, et al. High operating temperature InAs/GaSb type-Ⅱ superlattice detectors on GaAs substrate for the long wavelength infrared[J]. Infrared Physics & Technology, 2019, 96: 141-144. |
2 | CRAIG A P, LETKA V, CARMICHAEL M, et al. InAsSb-based detectors on GaSb for near-room-temperature operation in the mid-wave infrared[J]. Applied Physics Letters, 2021, 118(25): 251103. |
3 | NISHIMOTO N, FUJIHARA J, YOSHINO K. Biocompatibility of GaSb thin films grown by RF magnetron sputtering[J]. Applied Surface Science, 2017, 409: 375-380. |
4 | ZHOU X C, LI D S, HUANG J L, et al. Mid-wavelength type Ⅱ InAs/GaSb superlattice infrared focal plane arrays[J]. Infrared Physics & Technology, 2016, 78: 263-267. |
5 | LOTFI H, LI L, SHAZZAD RASSEL S M, et al. Monolithically integrated mid-IR interband cascade laser and photodetector operating at room temperature[J]. Applied Physics Letters, 2016, 109(15): 151111. |
6 | DONG W M, JIANG J, PENG Q W, et al. Study on the facet effect in LEC-GaSb single crystals[J]. Journal of Crystal Growth, 2024, 636: 127706. |
7 | 刘京明, 杨 俊, 赵有文, 等. GaSb单晶研究进展[J]. 人工晶体学报, 2024, 53(1): 1-11. |
LIU J M, YANG J, ZHAO Y W, et al. Research progress of GaSb single crystal[J]. Journal of Synthetic Crystals, 2024, 53(1): 1-11 (in Chinese). | |
8 | REIJNEN L, BRUNTON R, GRANT I R. Comparison of LEC-grown and VGF-grown GaSb[C]// AIP Conference Proceedings. American Institute of Physics, 2004, 738(1): 360-367. |
9 | 赵有文, 段满龙, 卢 伟, 等. 4 inch低位错密度InP单晶的VGF生长及性质研究[J]. 人工晶体学报, 2017, 46(5): 792-796. |
ZHAO Y W, DUAN M L, LU W, et al. VGF growth and property of 4 inch diameter InP single crystals with low dislocation density[J]. Journal of Synthetic Crystals, 2017, 46(5): 792-796 (in Chinese). | |
10 | YAN B, LIU W H, YU Z J, et al. Temperature dynamic compensation vertical Bridgman method growth of high-quality GaSb single crystals[J]. Journal of Crystal Growth, 2023, 602: 126988. |
11 | SIM B C, JUNG Y H, LEE J E, et al. Effect of the crystal-melt interface on the grown-in defects in silicon CZ growth[J]. Journal of Crystal Growth, 2007, 299(1): 152-157. |
12 | KLIN O, SNAPI N, COHEN Y, et al. A study of MBE growth-related defects in InAs/GaSb type-Ⅱ supperlattices for long wavelength infrared detectors[J]. Journal of Crystal Growth, 2015, 425: 54-59. |
13 | KOERPERICK E J, MURRAY L M, NORTON D T, et al. Optimization of MBE-grown GaSb buffer layers and surface effects of antimony stabilization flux[J]. Journal of Crystal Growth, 2010, 312(2): 185-191. |
14 | ZHU Y B, WEN H H, ZHANG H Y, et al. Real-time in situ observation of extended defect evolution near a crack tip in GaSb crystal under thermal loading[J]. Applied Surface Science, 2020, 515: 145934. |
15 | 杨 俊, 段满龙, 卢 伟, 等. 低位错密度4 inch GaSb(100)单晶生长及高质量衬底制备[J]. 人工晶体学报, 2017, 46(5): 820-824. |
YANG J, DUAN M L, LU W, et al. Growth of 4 inch diameter GaSb(100) single crystal with low dislocation density and high quality substrate preparation[J]. Journal of Synthetic Crystals, 2017, 46(5): 820-824 (in Chinese). | |
16 | NOGHABI O A, JOMÂA M, M’HAMDI M. Analysis of W-shape melt/crystal interface formation in Czochralski silicon crystal growth[J]. Journal of Crystal Growth, 2013, 362: 77-82. |
17 | ZHOU Y, ZHAO Y W, XIE H, et al. Residual stress distribution and flatness of dislocation-free Te-GaSb (100) substrate[J]. Japanese Journal of Applied Physics, 2021, 60(3): 035510. |
18 | BRIGHTUP S, GOORSKY M S. Chemical-mechanical polishing for Ⅲ-Ⅴ wafer bonding applications: polishing, roughness, and an abrasive-free polishing model[J]. ECS Transactions, 2010, 33(4): 383-389. |
19 | Inc STR. CGSim software[OL]. STR Inc., [2024-12-30]. https://str-soft.com/. |
20 | Inc STR. CGSim theory manual[Z]. v.22.1. Richmond VA: STR Inc., 2022. |
21 | Inc STR. CGSim flow module theory manual[Z]. v.24.1. Richmond VA: STR Inc., 2024. |
22 | NGUYEN T H T, CHEN J C, HU C, et al. Numerical simulation of heat and mass transfer during Czochralski silicon crystal growth under the application of crystal-crucible counter- and iso-rotations[J]. Journal of Crystal Growth, 2019, 507: 50-57. |
23 | LI X L, LIU Y L, WANG B, et al. Global heat loss and thermal stress analysis in Czochralski crystal growth[J]. Crystal Research and Technology, 2014, 49(6): 376-382. |
24 | 冯银红, 沈桂英, 赵有文, 等. 无位错Te-GaSb(100)单晶抛光衬底的晶格完整性[J]. 人工晶体学报, 2022, 51(6): 1003-1011. |
FENG Y H, SHEN G Y, ZHAO Y W, et al. Lattice perfection of dislocation-free (100) Te-GaSb single crystal polished substrate[J]. Journal of Synthetic Crystals, 2022, 51(6): 1003-1011 (in Chinese). | |
25 | SHEN G Y, ZHAO Y W, LIU J M, et al. Oxidation related particles on GaSb (100) substrate surfaces[J]. Journal of Crystal Growth, 2022, 581: 126499. |
26 | GRAY N W, PRAX A, JOHNSON D, et al. Rapid development of high-volume manufacturing methods for epi-ready GaSb wafers up to 6″ diameter for IR imaging applications[C]// SPIE Defense+Security. Proc SPIE 9819, Infrared Technology and Applications XLII, Baltimore, MD, USA. 2016, 9819: 274-284. |
27 | MARTINEZ R, TYBJERG M, FLINT P, et al. A study of the preparation of epitaxy-ready polished surfaces of (100) gallium antimonide substrates demonstrating ultra-low surface defects for MBE growth[C]// Infrared Technology and Applications XLII. Baltimore, Maryland, USA. SPIE, 2016: 298-309. |
28 | FURLONG M J, MARTINEZ B, TYBJERG M, et al. Growth and characterization of ≥6″ epitaxy-ready GaSb substrates for use in large area infrared imaging applications[C]// Infrared Technology and Applications XLI. Baltimore, Maryland, USA. SPIE, 2015: 182-189. |
29 | MARTINEZ R, AMIRHAGHI S, SMITH B, et al. Large diameter ‘ultra-flat’ epitaxy ready GaSb substrates: requirements for MBE grown advanced infrared detectors[C]// Infrared Technology and Applications XXXVIII. Baltimore, Maryland. SPIE, 2012: 8353. |
[1] | JIANG Bowen, JI Weiguo, ZHANG Lu, FAN Qiming, PAN Mingyan, HUANG Haotian, QI Hongji. Flow Field Symmetry of β-Ga2O3 Crystal Growth by EFG [J]. Journal of Synthetic Crystals, 2025, 54(3): 378-385. |
[2] | YIN Changshuai, MENG Biao, LIANG Kang, CUI Hanwen, LIU Sheng, ZHANG Zhaofu. Comparative Study on Thermal Field of Ga2O3 Single Crystal Growth Simulated by Different Thermal Radiation Models [J]. Journal of Synthetic Crystals, 2025, 54(3): 386-395. |
[3] | LIN Haixin, GAO Dedong, WANG Shan, ZHANG Zhenzhong, AN Yan, ZHANG Wenyong. Multi-Physics Field Modeling and Optimization of Large-Size Czochralski Silicon Single Crystal Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 17-33. |
[4] | XU Wanli, GAN Yunhai, LI Yuewen, LI Bin, ZHENG Youdou, ZHANG Rong, XIU Xiangqian. High Rate HVPE Growth of High Uniformity 6-Inch GaN Thick Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 11-16. |
[5] | ZHAO Qingsong, NIU Xiaodong, GU Xiaoying, DI Juqing. Growth and Properties of Large Size Ultra High Purity Germanium Single Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 34-39. |
[6] | CHENG Youliang, DU Huibin, ZHANG Zhongbao, WANG Kai. Optimization of Electronic Transport Model and Device Performance in Tin Dioxide-Based Dye-Sensitized Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1629-1639. |
[7] | YU Hang, ZHAO Qi, QI Xiaofang, MA Wencheng, XU Yongkuan, HU Zhanggui. Effect of Internal Radiation Heat Transfer on the Thermal Stress in Growing Ti∶Sapphire Crystal by Heat Exchanger Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1212-1221. |
[8] | SHI Yufeng, WANG Pengfei, MU Honghe, SU Liangbi. Numerical Simulation Investigation of Size Effect on Calcium Fluoride Crystals Grown by Vertical Bridgman Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 973-981. |
[9] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
[10] | XIA Zhenghui, LI Tengkun, REN Guoqiang, XIE Kaihe, LU Wenhao, LI Shaozhe, ZHENG Shunan, GAO Xiaodong, XU Ke. Dislocation Density Evolution Study of GaN Single Crystal Growth by Ammonothermal Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 480-486. |
[11] | REN Diansheng, WANG Zhizhen, ZHANG Shuhui, WANG Yuanli. Fabrication and Characterization of 8 Inch Semiconducting GaAs Single Crystal Substrate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 487-496. |
[12] | GU Xiaoying, ZHAO Qingsong, NIU Xiaodong, DI Juqing, ZHANG Jiaying, XIAO Yi, LUO Kai. Preparation and Properties of 13N Ultra-High Purity Germanium Single Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(3): 497-502. |
[13] | AN Kang, XU Guangyu, WU Haiping, ZHANG Yachen, ZHANG Yongkang, LI Lijun, LI Hong, ZHANG Xufang, LIU Fengbin, LI Chengming. Research Progress in Chemical Mechanical Polishing of Diamond [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1675-1687. |
[14] | LI Yang, CAO Kun, JIE Wanqi. Effect of Thermal Treated GaSb Substrate for Epitaxial Growth of CdZnTe Film by Close-Spaced Sublimation Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1705-1711. |
[15] | LIU Jingming, YANG Jun, ZHAO Youwen, YANG Cheng'ao, JIANG Dongwei, NIU Zhichuan. Research Progress of GaSb Single Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||