[1] HIGASHIWAKI M, SASAKI K, MURAKAMI H, et al. Recent progress in Ga2O3 power devices[J]. Semiconductor Science and Technology, 2016, 31(3): 034001. [2] ZHANG Z P, CHEN M N, BAI X P, et al. Sensitive direct-conversion X-ray detectors formed by ZnO nanowire field emitters and β-Ga2O3 photoconductor targets with an electron bombardment induced photoconductivity mechanism[J]. Photonics Research, 2021, 9(12): 2420. [3] QIAO G, CAI Q, MA T C, et al. Nanoplasmonically enhanced high-performance metastable phase α-Ga2O3 solar-blind photodetectors[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40283-40289. [4] 穆文祥, 贾志泰, 陶绪堂. 4英寸氧化镓单晶生长与性能[J]. 人工晶体学报, 2022, 51(9/10): 1749-1753. MU W X, JIA Z T, TAO X T. Growth and properties of 4 inch β-Ga2O3 single crystal[J]. Journal of Synthetic Crystals, 2022, 51(9/10): 1749-1753 (in Chinese). [5] HOSSAIN E, KULKARNI R, MONDAL R, et al. Optimization of gas ambient for high quality β-Ga2O3 single crystals grown by the optical floating zone technique[J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3144-Q3148. [6] GALAZKA Z. Growth of bulk β-Ga2O3 single crystals by the Czochralski method[J]. Journal of Applied Physics, 2022, 131(3): 031103. [7] AIDA H, NISHIGUCHI K, TAKEDA H, et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method[J]. Japanese Journal of Applied Physics, 2008, 47(11R): 8506. [8] HOSHIKAWA K, OHBA E, KOBAYASHI T, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air[J]. Journal of Crystal Growth, 2016, 447: 36-41. [9] GAO X, MA K K, JIN Z, et al. Characteristics of 4-inch (100) oriented Mg-doped β-Ga2O3 bulk single crystals grown by a casting method[J]. Journal of Alloys and Compounds, 2024, 987: 174162. [10] SHI S Y, LIU D, HUO Z R. Simulation of thermoelastic coupling in silicon single crystal growth based on alternate two-stage physics-informed neural network[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106468. [11] REN J C, LIU D, WAN Y. Modeling and application of Czochralski silicon single crystal growth process using hybrid model of data-driven and mechanism-based methodologies[J]. Journal of Process Control, 2021, 104: 74-85. [12] 于 行, 赵 琪, 齐小方, 等. 热交换法掺钛蓝宝石晶体生长过程中内辐射传热对晶体热应力的影响[J]. 人工晶体学报, 2024, 53(7): 1212-1221. YU H, ZHAO Q, QI X F, et al. Effect of internal radiation heat transfer on the thermal stress in growing Ti∶sapphire crystal by heat exchanger method[J]. Journal of Synthetic Crystals, 2024, 53(7): 1212-1221 (in Chinese). [13] NUNES E M, NARAGHI M H N, ZHANG H, et al. A volume radiation heat transfer model for Czochralski crystal growth processes[J]. Journal of Crystal Growth, 2002, 236(4): 596-608. [14] KOBAYASHI M, HAGINO T, TSUKADA T, et al. Effect of internal radiative heat transfer on interface inversion in Czochralski crystal growth of oxides[J]. Journal of Crystal Growth, 2002, 235(1/2/3/4): 258-270. [15] VOROB'EV A, GALYUKOV A, SMIRNOV A, et al. Numerical model of species transport and melt stoichiometry in β-Ga2O3 crystal growth[J]. Journal of Crystal Growth, 2022, 583: 126526. [16] CHAYAB DRAA A, MOKHTARI F, LASLOUDJI I, et al. Internal radiation effect on semiconductor β-Ga2O3 crystals grown by the VB Method and anisotropic thermal stress[J]. Journal of Crystal Growth, 2024, 648: 127910. [17] LE C C, LI Z Y, MU W X, et al. 3D numerical design of the thermal field before seeding in an edge-defined film-fed growth system for β-Ga2O3 ribbon crystals[J]. Journal of Crystal Growth, 2019, 506: 83-90. [18] CHEN C H, CHEN J C, LU C W, et al. Numerical simulation of heat and fluid flows for sapphire single crystal growth by the Kyropoulos method[J]. Journal of Crystal Growth, 2011, 318(1): 162-167. [19] HADDAD F, BOUZOUAOUI Y Z, MOKHTARI F, et al. Computational analysis of radiative heat transfer in Czochralski furnace and 3D anisotropic thermal stress in Li2MoO4 bulk crystal[J]. Crystal Research and Technology, 2022, 57(10): 2270019. [20] FANG H S, JIN Z L, ZHANG M J, et al. Role of internal radiation at the different growth stages of sapphire by Kyropoulos method[J]. International Journal of Heat and Mass Transfer, 2013, 67: 967-973. [21] 李维特, 黄保海, 毕仲波. 热应力理论分析及应用[M]. 北京: 中国电力出版社, 2004. LI W T, HUANG B H, BI Z B. Thermal stress theory analysis and application[M]. Beijing: China Electric Power Press, 2004 (in Chinese). [22] BU Y Z, SAI Q L, QI H J. Stability of interfacial thermal balance in thick β-Ga2O3 crystal growth by EFG[J]. Journal of Crystal Growth, 2023, 612: 127194. [23] TANG X, LIU B T, YU Y, et al. Numerical analysis of difficulties of growing large-size bulk β-Ga2O3 single crystals with the czochralski method[J]. Crystals, 2021, 11(1): 25. [24] KALYANA KUMAR M, SUDERSANAN P D. A study on thermomechanical properties of zirconium di oxide coated piston material of various thickness and its comparison with uncoated material[J]. Materials Today: Proceedings, 2021, 45: 294-298. [25] KLIMM D, BERTRAM R, GALAZKA Z, et al. High melting point oxides-a challenge for crystal growth[J]. Crystal Research and Technology, 2012, 47(3): 247-252. [26] MILLER W, BÖTTCHER K, GALAZKA Z, et al. Numerical modelling of the Czochralski growth of β-Ga2O3[J]. Crystals, 2017, 7(1): 26. [27] STELIAN C, BARTHALAY N, DUFFAR T. Numerical investigation of factors affecting the shape of the crystal-melt interface in edge-defined film-fed growth of sapphire crystals[J]. Journal of Crystal Growth, 2017, 470: 159-167. |