Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (5): 898-908.DOI: 10.16553/j.cnki.issn1000-985x.2024.0293
• Research Articles • Previous Articles
YU Feng1,2,3(), ZHENG Qiang1,2,3(
), QI Tingyu1,2,3, ZHANG Yubai1,2,3, MA Yali1,2,3, JIA Songyan1,2,3, LI Xue1,2,3
Received:
2024-11-22
Online:
2025-05-15
Published:
2025-05-28
CLC Number:
YU Feng, ZHENG Qiang, QI Tingyu, ZHANG Yubai, MA Yali, JIA Songyan, LI Xue. Controlled Preparation of High Aspect Ratio Calcium Carbonate Whiskers from Dolomite Refined Solution[J]. Journal of Synthetic Crystals, 2025, 54(5): 898-908.
Component | CaO | MgO | SiO2 | SO3 | Fe2O3 | ZnO | MnO | SrO |
---|---|---|---|---|---|---|---|---|
Mass fraction/% | 62.17 | 33.62 | 3.40 | 0.52 | 0.21 | 0.03 | 0.03 | 0.02 |
Table 1 XRF composition analysis of dolomite
Component | CaO | MgO | SiO2 | SO3 | Fe2O3 | ZnO | MnO | SrO |
---|---|---|---|---|---|---|---|---|
Mass fraction/% | 62.17 | 33.62 | 3.40 | 0.52 | 0.21 | 0.03 | 0.03 | 0.02 |
Refined solution composition | Ca2+ | Mg2+ | NH4+ | NH3 | NO3- |
---|---|---|---|---|---|
Concentration/(mol·L-1) | 0.70 | 0.05 | 1.60 | 1.95 | 3.40 |
Table 2 Composition of dolomite refined solution
Refined solution composition | Ca2+ | Mg2+ | NH4+ | NH3 | NO3- |
---|---|---|---|---|---|
Concentration/(mol·L-1) | 0.70 | 0.05 | 1.60 | 1.95 | 3.40 |
Parameter | 0 h | 1 h | 2 h | 3 h |
---|---|---|---|---|
Conversion rate of Ca2+/% | 93.15 | 95.22 | 95.41 | 94.19 |
Whisker length/μm | 10~30 | 25~35 | 20~35 | 20~35 |
Whisker diameter/μm | 1.5~2.5 | 0.5~1.0 | 0.5~1.0 | 0.5~1.0 |
Whisker aspect ratio | 4~12 | 25~35 | 20~35 | 20~35 |
Purity/% | 98.65 | 99.43 | 99.44 | 99.43 |
Table 3 Conversion rate of Ca2+, size and purity of calcium carbonate whiskers for different aging time
Parameter | 0 h | 1 h | 2 h | 3 h |
---|---|---|---|---|
Conversion rate of Ca2+/% | 93.15 | 95.22 | 95.41 | 94.19 |
Whisker length/μm | 10~30 | 25~35 | 20~35 | 20~35 |
Whisker diameter/μm | 1.5~2.5 | 0.5~1.0 | 0.5~1.0 | 0.5~1.0 |
Whisker aspect ratio | 4~12 | 25~35 | 20~35 | 20~35 |
Purity/% | 98.65 | 99.43 | 99.44 | 99.43 |
Group | Ion concentration/(mol·L-1) | ||||
---|---|---|---|---|---|
Ca2+ | Mg2+ | NH4+ | NH3 | NO3- | |
A | 0.70 | 0.05 | 1.60 | 1.95 | 3.40 |
B | 0.70 | 0 | 1.60 | 1.45 | 3.40 |
Table 4 Composition of refined solution
Group | Ion concentration/(mol·L-1) | ||||
---|---|---|---|---|---|
Ca2+ | Mg2+ | NH4+ | NH3 | NO3- | |
A | 0.70 | 0.05 | 1.60 | 1.95 | 3.40 |
B | 0.70 | 0 | 1.60 | 1.45 | 3.40 |
Crystal plane spacing | d value of measurement/nm | d value of the PDF card/nm |
---|---|---|
(120) | 0.314 | 0.310 |
(121) | 0.275 | 0.273 |
(001) | 0.546 | 0.574 |
( | 0.269 | 0.273 |
Angle of crystal plane | Angle of measurement/(°) | Angle calculated from PDF card/(°) |
(120)/(121) | 28.20 | 28.41 |
(121)/(001) | 61.11 | 61.59 |
(001)/( | 59.14 | 61.59 |
Table 5 SAED object matching calculation
Crystal plane spacing | d value of measurement/nm | d value of the PDF card/nm |
---|---|---|
(120) | 0.314 | 0.310 |
(121) | 0.275 | 0.273 |
(001) | 0.546 | 0.574 |
( | 0.269 | 0.273 |
Angle of crystal plane | Angle of measurement/(°) | Angle calculated from PDF card/(°) |
(120)/(121) | 28.20 | 28.41 |
(121)/(001) | 61.11 | 61.59 |
(001)/( | 59.14 | 61.59 |
1 | HUA S Y, ZHENG Q, YU F, et al. Preparation and mechanism of calcium carbonate whiskers from DoLOMITE refined solution[J]. Crystal Research and Technology, 2024, 59(3): 2300305. |
2 | RAMAKRISHNA C, THENEPALLI T, HUH J H, et al. Preparation of needle like aragonite precipitated calcium carbonate (PCC) from dolomite by carbonation method[J]. Journal of the Korean Ceramic Society, 2016, 53(1): 7-12. |
3 | SHEN Y H, XIE A J, CHEN Z X, et al. Controlled synthesis of calcium carbonate nanocrystals with multi-morphologies in different bicontinuous microemulsions[J]. Materials Science and Engineering: A, 2007, 443(1/2): 95-100. |
4 | SAULAT H, CAO M L, KHAN M M, et al. Preparation and applications of calcium carbonate whisker with a special focus on construction materials[J]. Construction and Building Materials, 2020, 236: 117613. |
5 | LIENDO F, ARDUINO M, DEORSOLA F A, et al. Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: a review[J]. Powder Technology, 2022, 398: 117050. |
6 | LI Q L, DAI Z G, SHANG D K, et al. Ultrahigh purity CaCO3 whiskers derived from the enhanced diffusion of carbonate ions from a larger liquid-gas interface through porous quartz stones[J]. CrystEngComm, 2020, 22(38): 6407-6414. |
7 | CHEN Q J, DING W J, PENG T J, et al. Synthesis and characterization of calcium carbonate whisker from yellow phosphorus slag[J]. Open Chemistry, 18(1): 347-356. |
8 | SUN Y B, SHEN Y Y, WANG Y L, et al. Converting sintering red mud to valuable calcium carbonate whiskers via an innovative magnesium-modified wet carbonation[J]. Ceramics International, 2024, 50(12): 21808-21820. |
9 | LEE S W, KIM Y I, AHN J W. The use of iminodiacetic acid for low-temperature synthesis of aragonite crystal microrods: correlation between aragonite crystal microrods and stereochemical effects[J]. International Journal of Mineral Processing, 2009, 92(3/4): 190-195. |
10 | WANG M, ZOU H K, SHAO L, et al. Controlling factors and mechanism of preparing needlelike CaCO3 under high-gravity environment[J]. Powder Technology, 2004, 142(2/3): 166-174. |
11 | SULISTIYONO E, FIRDIYONO F, NATASHA N C, et al. Comparison of dolomite crystal structure, calcinations dolomite and magnesium hydroxide in partial calcinations and slaking process[J]. IOP Conference Series: Materials Science and Engineering, 2017, 176: 012041. |
12 | HOULLEBERGHS M, BREYNAERT E, ASSELMAN K, et al. Evolution of the crystal growth mechanism of zeolite W (MER) with temperature[J]. Microporous and Mesoporous Materials, 2019, 274: 379-384. |
13 | 马 俊, 刘华彦, 梁 锦, 等. 两种重要形貌的碳酸钙的可控合成及生长机理探讨[J]. 材料科学与工程学报, 2011, 29(2): 227-232. |
MA J, LIU H Y, LIANG J, et al. Controllable synthesis of calcium carbonate with needle-like and cubic morphologies and the crystal growth mechanisms[J]. Journal of Materials Science and Engineering, 2011, 29(2): 227-232 (in Chinese). | |
14 | DU L, WANG Y J, WANG K, et al. Growth of aragonite CaCO3 whiskers in a microreactor with calcium dodecyl benzenesulfonate as a control agent[J]. Industrial & Engineering Chemistry Research, 2015, 54(28): 7131-7140. |
15 | 胡克伟. 文石型碳酸钙晶须制备工艺及其形成机理研究[D]. 成都: 成都理工大学, 2006. |
HU K W. Study on preparation technology and formation mechanism of aragonite calcium carbonate whisker[D]. Chengdu: Chengdu University of Technology, 2006 (in Chinese). | |
16 | CHEN J X, ZHANG X C, GE Y Y, et al. The precipitation mechanism of calcium carbonate in the gas-liquid-solid three phase at alkalescency condition[J]. Crystal Research and Technology, 2017, 52(2): 1600229. |
17 | SINGH M R, RAMKRISHNA D. Dispersions in crystal nucleation and growth rates: implications of fluctuation in supersaturation[J]. Chemical Engineering Science, 2014, 107: 102-113. |
18 | 李会杰, 黄娜娜, 仇 龙, 等. 白云石制备碳酸钙晶须及其机理的研究[J]. 人工晶体学报, 2020, 49(1): 119-124+137. |
LI H J, HUANG N N, QIU L, et al. Preparation of calcium carbonate whiskers from dolomite and its mechanism[J]. Journal of Synthetic Crystals, 2020, 49(1): 119-124+137 (in Chinese). | |
19 | MATSUMOTO M, FUKUNAGA T, ONOE K. Polymorph control of calcium carbonate by reactive crystallization using microbubble technique[J]. Chemical Engineering Research and Design, 2010, 88(12): 1624-1630. |
20 | ZENG Y P, CAO J W, WANG Z, et al. Insights into the confined crystallization in microfluidics of amorphous calcium carbonate[J]. Crystal Growth & Design, 2018, 18(11): 6538-6546. |
21 | MACHADO N T, SANTOS S F, FRANCESCHI E, et al. Crystallization of calcium carbonate: modeling thermodynamic equilibrium, pathway, nucleation, growth, agglomeration, and dissolution kinetics with the presence of Mg2+, Ba2+, and Sr2+ [J]. Industrial & Engineering Chemistry Research, 2022, 61(37): 13944-13961. |
22 | BERNER R A. The role of magnesium in the crystal growth of calcite and aragonite from sea water[J]. Geochimica et Cosmochimica Acta, 1975, 39(4): 489-504. |
23 | 王世燕, 袁顺东, 卢贵武. Mg2+影响方解石晶体生长机制的分子动力学研究[J]. 青岛大学学报(自然科学版), 2012, 25(3): 41-45. |
WANG S Y, YUAN S D, LU G W. Molecular dynamics study of influence of Mg2+ on calcite crystal growth[J]. Journal of Qingdao University (Natural Science Edition), 2012, 25(3): 41-45 (in Chinese). |
[1] | DU Qingbo, YANG Yapeng, GAO Xudong, ZHANG Zhi, ZHAO Xiaoyu, WANG Huiqi, LIU Yier, LI Guoqiang. Research Progress of Wide Band Gap Semiconductor Silicon Carbide Based Nuclear Radiation Detector [J]. Journal of Synthetic Crystals, 2025, 54(5): 737-756. |
[2] | JIANG Xianlong, ZHENG Weitao, ZHU Yunzhong. In-Situ Diagnosis of Lithium Niobate Crystal Growth Interface Flipping Phenomenon [J]. Journal of Synthetic Crystals, 2025, 54(4): 533-542. |
[3] | QI Zhanguo, WANG Shouzhi, LI Qiubo, WANG Zhongxin, SHAO Huihui, LIU Lei, WANG Guodong, SUN Defu, YU Huidong, JIANG Kaize, ZHANG Shuang, CHEN Xiufang, XU Xiangang, ZHANG Lei. Preparation of 4-Inch High-Quality GaN Single Crystal Substrates [J]. Journal of Synthetic Crystals, 2025, 54(4): 717-720. |
[4] | WANG Ziming, ZHANG Yachao, FENG Qian, LIU Shiteng, LIU Yuhong, WANG Yao, WANG Long, ZHANG Jincheng, HAO Yue. ε-Ga2O3 Growth on c-Plane Sapphire Substrate with Metal-Organic Chemical Vapor Deposition [J]. Journal of Synthetic Crystals, 2025, 54(3): 420-425. |
[5] | YAN Yuchao, WANG Cheng, LU Changcheng, LIU Yingying, XIA Ning, JIN Zhu, ZHANG Hui, YANG Deren. Growth of 2-Inch Fe-Doped β-Ga2O3 Single Crystal with High Resistance and Properties of (010) Substrates [J]. Journal of Synthetic Crystals, 2025, 54(2): 197-201. |
[6] | YANG Xiaolong, TANG Huili, ZHANG Chaoyi, SUN Peng, HUANG Lin, CHEN Long, XU Jun, LIU Bo. Growth and Spectral Properties of Bi-Doped β-Ga2O3 Single Crystal by Optical Floating Zone Method [J]. Journal of Synthetic Crystals, 2025, 54(2): 202-211. |
[7] | HUANG Dongyang, HUANG Haotian, PAN Mingyan, XU Ziqian, JIA Ning, QI Hongji. Growth and Properties of β-Ga2O3 Single Crystal by Vertical Bridgman Method [J]. Journal of Synthetic Crystals, 2025, 54(2): 190-196. |
[8] | XU Wanli, GAN Yunhai, LI Yuewen, LI Bin, ZHENG Youdou, ZHANG Rong, XIU Xiangqian. High Rate HVPE Growth of High Uniformity 6-Inch GaN Thick Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 11-16. |
[9] | SUN Yuanlong, HU Ziyu, ZHENG Guozong. Growth and Photoelectric Properties Characterization of Large-Sized CH3NH3PbBr3 Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1313-1318. |
[10] | MA Qisi, LIU Jianggao, SHE Weilin, CAO Cong, ZHANG Lichao, ZHAO Chao, FAN Yexia, ZHOU Zhenqi. Effect of Furnace Air Convection on the Temperature Field of Tellurium Zinc Cadmium Crystal Growth Based on CGSim Simulation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1344-1351. |
[11] | LING Hao, XU Le, CHEN Sixian, TANG Yuanzhi, SUN Haibin, GUO Xue, FENG Yurun, HU Qiangqiang. Growth and Optical Properties of Large Size CsCu2I3 Single Crystal by Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1121-1126. |
[12] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
[13] | XING Jiabin, LI Wei, JIA Songyan, MA Yali, LI Xue, ZHENG Qiang. Preparation of Highly Dispersed Nano Calcium Carbonate by Low-Temperature Carbonization Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 864-872. |
[14] | HUANG Changbao, HU Qianqian, ZHU Zhicheng, LI Ya, MAO Changyu, XU Junjie, WU Haixin, NI Youbao. Growth and Device Fabrication of Mid to Far-Infrared Cr2+/Fe2+∶CdSe Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 551-553. |
[15] | QIN Feng, WU Jinjie, DENG Ningqin, JIAO Zhiwei, ZHU Weifeng, TANG Xianqiang, ZHAO Rui. Research Progress for Lead Halide Perovskite Direct Radiation Detector Based on the Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 554-571. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 16
|
|
|||||||||||||||||||||||||||||||||
Abstract 32
|
|
|||||||||||||||||||||||||||||||||