Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (5): 772-783.DOI: 10.16553/j.cnki.issn1000-985x.2024.0299
• Research Articles • Previous Articles Next Articles
LI Jiahe1(), ZHENG Lili1(
), ZHANG Hui2, LI Xiang3, CHEN Junfeng3
Received:
2024-11-25
Online:
2025-05-15
Published:
2025-05-28
CLC Number:
LI Jiahe, ZHENG Lili, ZHANG Hui, LI Xiang, CHEN Junfeng. Influence of Thermal Field on the Interface Shape and Growth Rate of Fluoride Crystals Grown by Bridgman Method[J]. Journal of Synthetic Crystals, 2025, 54(5): 772-783.
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
BaF2熔点/K | 1 641 | BaF2折射率 | 1.47 |
晶体热导率/(W·m-1·K-1) | 2.4 | 石墨密度/(kg·m-3) | 1 760 |
熔体热导率/(W·m-1·K-1) | 0.24 | 石墨热导率/(W·m-1·K-1) | 23.3 |
晶体平均消光系数/m-1 | 10 | 石墨定压热容/(J·kg-1·K-1) | 1 953 |
熔体平均消光系数/m-1 | 100 | 石墨发射率 | 0.9 |
BaF2定压热容/(J·kg-1·K-1) | 406.1 | 保温碳毡热导率/(W·m-1·K-1) | 0.54 |
BaF2密度/(kg·m-3) | 4 890 | 保温碳毡发射率 | 0.9 |
BaF2潜热/(105 J·kg-1) | 3.8 |
Table 1 Physical property parameter[13,18]
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
BaF2熔点/K | 1 641 | BaF2折射率 | 1.47 |
晶体热导率/(W·m-1·K-1) | 2.4 | 石墨密度/(kg·m-3) | 1 760 |
熔体热导率/(W·m-1·K-1) | 0.24 | 石墨热导率/(W·m-1·K-1) | 23.3 |
晶体平均消光系数/m-1 | 10 | 石墨定压热容/(J·kg-1·K-1) | 1 953 |
熔体平均消光系数/m-1 | 100 | 石墨发射率 | 0.9 |
BaF2定压热容/(J·kg-1·K-1) | 406.1 | 保温碳毡热导率/(W·m-1·K-1) | 0.54 |
BaF2密度/(kg·m-3) | 4 890 | 保温碳毡发射率 | 0.9 |
BaF2潜热/(105 J·kg-1) | 3.8 |
参数 | 数值 |
---|---|
坩埚长度,Lc/cm | 30 |
坩埚半径,Rc/cm | 6 |
晶体半径,Rcrystal/cm | 5.6 |
上加热器长度,Lh/cm | 35 |
下加热器长度,Ll/cm | 35 |
绝缘区长度,La | |
下降速率,Vp/(mm·h-1) | 2 |
坩埚底部放肩角度,θ |
Table 2 Variable description and system structure parameters
参数 | 数值 |
---|---|
坩埚长度,Lc/cm | 30 |
坩埚半径,Rc/cm | 6 |
晶体半径,Rcrystal/cm | 5.6 |
上加热器长度,Lh/cm | 35 |
下加热器长度,Ll/cm | 35 |
绝缘区长度,La | |
下降速率,Vp/(mm·h-1) | 2 |
坩埚底部放肩角度,θ |
Fig.4 Evolution of growth rate and interface shape during growth. (a) Axial growth rate variation along the crystal growth height; (b)~(g) temperature distribution in different growth stages
Fig.5 Variation of central axis crystal growth rate with crystal growth height for adiabatic block lengths of 5, 10, 15 and 20 cm (a), as well as the isotherm distribution at a growth height of 200 mm (b)~(e)
Fig.6 Variation of central axis crystal growth rate with crystal growth height at lower heater temperatures of 1 300, 1 400, 1 500, and 1 600 K (a), as well as the isotherm distribution at a growth height of 200 mm (b)~(e)
Fig.7 Variation of central axis crystal growth rate with crystal growth height at upper heater temperatures of 1 675, 1 700, 1 725, and 1 750 K (a), as well as the isotherm distribution at a growth height of 200 mm (b)~(e)
Fig.8 Variation of central axis crystal growth rate with crystal growth height at different crucible bottom shapes (θ=0°, 15°, 30°) (a), as well as the evolution of the growth interface shape (b)~(d)
Fig.9 Effect of crystal size on growth rate and interface shape. (a) Variation of central axis crystal growth rate with crystal growth height of different crystal sizes; temperature distribution of small-sized (b) and large-sized (c) crystal
Fig.10 Thermal field control of large-sized crystals.(a) Variation of central axis crystal growth rate with crystal growth height at different upper heater temperatures; (b), (c) temperature distribution
Fig.13 Heat field control in actual furnace. (a) Interface shape of different Tc (L represents melt, S represents crystal); (b) local diagram of the crystal growth system; (c) diagram of heat dissipation opening; (d) interface shape of different d
1 | YIN Z W. Research and development works on BaF2 crystals in Shanghai institute of ceramics[J]. MRS Online Proceedings Library, 1994, 348(1): 65-76. |
2 | SCHAFFERS K I, TASSANO J B, BAYRAMIAN A B, et al. Growth of Yb∶S-FAP [Yb3+∶Sr5(PO4)3F] crystals for the mercury laser[J]. Journal of Crystal Growth, 2003, 253(1/2/3/4): 297-306. |
3 | XU J Y, SHI M L, LU B L, et al. Bridgman growth and characterization of calcium fluoride crystals[J]. Journal of Crystal Growth, 2006, 292(2): 391-394. |
4 | FANG H S, ZHENG L L, ZHANG H, et al. Reducing melt inclusion by submerged heater or baffle for optical crystal growth[J]. Crystal Growth & Design, 2008, 8(6): 1840-1848. |
5 | VASCONCELLOS K F, BEECH J. The development of blowholes in the ice/water/carbon dioxide system[J]. Journal of Crystal Growth, 1975, 28(1): 85-92. |
6 | MA X, ZHANG H, ZHENG L L. Impact of thermal transport on silicon carbide formation/engulfment during directional solidification of Si[C]// ASME 2012 International Mechanical Engineering Congress and Exposition, November 9—15, 2012, Houston, Texas, USA. 2013: 3041-3051. |
7 | HU K W, ZHENG L L, ZHANG H. Control of interface shape during high melting sesquioxide crystal growth by HEM technique[J]. Journal of Crystal Growth, 2018, 483: 175-182. |
8 | PETERSON J H, DERBY J J. An axial temperature profile curvature criterion for the engineering of convex crystal growth interfaces in Bridgman systems[J]. Journal of Crystal Growth, 2017, 468: 899-904. |
9 | VOLZ M P, MAZURUK K, AGGARWAL M D, et al. Interface shape control using localized heating during Bridgman growth[J]. Journal of Crystal Growth, 2009, 311(8): 2321-2326. |
10 | STELIAN C. Numerical modeling of radiative heat transfer in Bridgman solidification of semi-transparent BaF2 crystals[J]. Journal of Crystal Growth, 2007, 306(2): 444-451. |
11 | 施宇峰, 王鹏飞, 穆宏赫, 等. 尺寸效应对坩埚下降法生长氟化钙晶体影响机制的数值模拟分析[J]. 人工晶体学报, 2024, 53(6): 973-981. |
SHI Y F, WANG P F, MU H H, et al. Numerical simulation investigation of size effect on calcium fluoride crystals grown by vertical Bridgman method[J]. Journal of Synthetic Crystals, 2024, 53(6): 973-981 (in Chinese). | |
12 | WANG P F, ZHANG Z H, WU Q H, et al. Numerical investigation of the VB growth of CaF2 crystal with supercooled crucible wall[J]. Journal of Crystal Growth, 2023, 617: 127232. |
13 | XIONG H B, MA Y, ZHENG L L. A modified HEM system for optical crystal growth with high melting temperature[J]. Journal of Crystal Growth, 2007, 299(2): 404-412. |
14 | WANG P, ZHANG Z, BIAN G, et al. Control of heat transfer in the VB growth of MgF2 crystal with a modified baffle[J]. Available at SSRN 4626854, |
15 | HOWELL J, MENGÜÇ M P, SIEGEL R. Thermal radiation heat transfer[M]. 6th ed. Boca Raton: Taylor & Francis Group, 2015: 211-234. |
16 | VIZMAN D, NICOARA I, NICOARA D. On the factors affecting the isotherm shape during Bridgman growth of semi-transparent crystals[J]. Journal of Crystal Growth, 1996, 169(1): 161-169. |
17 | MILNE E A. Note on rosseland’s integral for the stellar absorption coefficient[J]. Monthly Notices of the Royal Astronomical Society, 1925, 85(9): 979-984. |
18 | BARVINSCHI F, BUNOIU O, NICOARA I, et al. Factors affecting the isotherm shape of semi-transparent BaF2 crystals grown by Bridgman method[J]. Journal of Crystal Growth, 2002, 237: 1762-1768. |
19 | SHI Y F, WANG P F, MU H H, et al. Advances of interface, flow, and stress control for VB crystal growth: an overview[J]. Progress in Crystal Growth and Characterization of Materials, 2023, 69(2/3/4): 100605. |
[1] | LIU Wenyu, QIAN Lu, LI Fangjian, PAN Shangke, SUN Zhigang, CHEN Hongbing, PAN Jianguo. Growth and Luminescence Properties of Li2MoO4 Crystal by Bridgman Method [J]. Journal of Synthetic Crystals, 2025, 54(5): 793-800. |
[2] | YANG Wenwen, LU Wei, XIE Hui, LIU Gang, LYU Xinyu, BAI Yihan, LI Chenhui, PAN Jiaoqing, ZHAO Youwen, SHEN Guiying. Growth and Performance of Low-Dislocation 6-Inch GaSb Single Crystal [J]. Journal of Synthetic Crystals, 2025, 54(5): 784-792. |
[3] | JIANG Bowen, JI Weiguo, ZHANG Lu, FAN Qiming, PAN Mingyan, HUANG Haotian, QI Hongji. Flow Field Symmetry of β-Ga2O3 Crystal Growth by EFG [J]. Journal of Synthetic Crystals, 2025, 54(3): 378-385. |
[4] | YIN Changshuai, MENG Biao, LIANG Kang, CUI Hanwen, LIU Sheng, ZHANG Zhaofu. Comparative Study on Thermal Field of Ga2O3 Single Crystal Growth Simulated by Different Thermal Radiation Models [J]. Journal of Synthetic Crystals, 2025, 54(3): 386-395. |
[5] | HUANG Dongyang, HUANG Haotian, PAN Mingyan, XU Ziqian, JIA Ning, QI Hongji. Growth and Properties of β-Ga2O3 Single Crystal by Vertical Bridgman Method [J]. Journal of Synthetic Crystals, 2025, 54(2): 190-196. |
[6] | ZHOU Lina, LIU Jianqiang, NIU Xiaowei. Growth of ø210 mm Large-Size Eu3+∶CaF2 Laser Crystal [J]. Journal of Synthetic Crystals, 2025, 54(2): 358-359. |
[7] | ZHENG Quan, LIU Xuechao, WANG Hao, ZHU Xinfeng, PAN Xiuhong, CHEN Kun, DENG Weijie, TANG Meibo, XU Hao, WU Honghui, JIN Min. Effect of Aluminum Doping on the Crystal Structure and Properties of Indium Selenide Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1528-1535. |
[8] | CHEN Xinxin, HAN Jiali, PAN Jianguo. Growth and Luminescence Properties of Large Size and High Quality CsCu2I3 Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1106-1111. |
[9] | SHI Yufeng, WANG Pengfei, MU Honghe, SU Liangbi. Numerical Simulation Investigation of Size Effect on Calcium Fluoride Crystals Grown by Vertical Bridgman Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 973-981. |
[10] | YIN Jie, ZHANG Xiaoqiang, CHEN Can, PAN Jianguo. Growth and Scintillation Properties of Cerium-Doped Cs2BaBr4 Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 760-765. |
[11] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
[12] | HUANG Changbao, HU Qianqian, ZHU Zhicheng, LI Ya, MAO Changyu, XU Junjie, WU Haixin, NI Youbao. Growth and Device Fabrication of Mid to Far-Infrared Cr2+/Fe2+∶CdSe Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 551-553. |
[13] | ZHAO Tao, AI Lei, LIANG Tuanjie, QIAN Huiyu, SUN Zhigang, PAN Jianguo. Growth and Optical Properties of Yb∶Ca3(NbGa)5O12 Crystals by Bridgman Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 620-626. |
[14] | YANG Jianghao, HUANG Xinshuai, LAN Chenhui, WEI Qinhua, QIN Laishun. Growth and Luminescence Properties of Cs4EuI6∶Sm Near-Infrared Scintillation Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 627-633. |
[15] | ZHOU Lintao, ZHAO Tao, SUN Zhigang, JIANG Linwen, PAN Shangke, PAN Jianguo, ZHENG Yanqing. Growth of 2-Inch Ytterbium-Doped Calcium Niobium Gallium Garnet Single Crystal by Bridgman Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1669-1674. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||