Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (9): 1654-1662.DOI: 10.16553/j.cnki.issn1000-985x.2025.0036
• Research Articles • Previous Articles Next Articles
WANG Jun(
), JIN Yaoyao, HU Zhangtao, ZHENG Yi, ZHANG Han
Received:2025-02-25
Online:2025-09-20
Published:2025-09-23
CLC Number:
WANG Jun, JIN Yaoyao, HU Zhangtao, ZHENG Yi, ZHANG Han. Nano-Fe2O3/Bamboo Leaf Carbon Composite Anode Materials for High-Performance Lithium-Ion Batteries[J]. Journal of Synthetic Crystals, 2025, 54(9): 1654-1662.
| Reagents name | Chemical formula/Abbreviation | Purity | Manufacturer |
|---|---|---|---|
| Ammonium fluoride | NH4F | Analytical pure | Chengdu Cologne Chemical Co., Ltd. |
| Urea | CH4N2O | Analytical pure | Chengdu Cologne Chemical Co., Ltd. |
| Ferric nitrate | Fe(NO3)3·9H2O | Analytical pure | Tianjin Damao Chemical Reagent Factory |
| N-methylpyrrolidone | NMP | Analytical pure | Wuxi Yatai United Chemical Co., Ltd. |
| Polyvinylidene fluoride | PVDF | Analytical pure | Zhongcheng Plastics Co., Ltd. |
| Acetylene black | C | Battery grade | Shanghai Dengke Industrial Co., Ltd. |
| Anhydrous ethanol | C2H5OH | Analytical pure | Chongqing Chuandong Chemical Co., Ltd. |
| Lithium sheet | Li | Battery grade | Shanghai Oujin Industrial Co., Ltd. |
| High purity nitrogen | N2 | 99.999% | Chongqing Chaoyang Gas Co., Ltd. |
| Electrolyte | LiPF6/(EC+EMC) | Battery grade | Tianjin Aiweixin Chemical Technology Co., Ltd. |
| Membrane | Celgard-2400 | Battery grade | Celgard LLC |
| Hydrofluoric acid | HF | Analytical pure | Chongqing Chuandong Chemical Co., Ltd. |
Table 1 Reagents and drugs required for the experiment
| Reagents name | Chemical formula/Abbreviation | Purity | Manufacturer |
|---|---|---|---|
| Ammonium fluoride | NH4F | Analytical pure | Chengdu Cologne Chemical Co., Ltd. |
| Urea | CH4N2O | Analytical pure | Chengdu Cologne Chemical Co., Ltd. |
| Ferric nitrate | Fe(NO3)3·9H2O | Analytical pure | Tianjin Damao Chemical Reagent Factory |
| N-methylpyrrolidone | NMP | Analytical pure | Wuxi Yatai United Chemical Co., Ltd. |
| Polyvinylidene fluoride | PVDF | Analytical pure | Zhongcheng Plastics Co., Ltd. |
| Acetylene black | C | Battery grade | Shanghai Dengke Industrial Co., Ltd. |
| Anhydrous ethanol | C2H5OH | Analytical pure | Chongqing Chuandong Chemical Co., Ltd. |
| Lithium sheet | Li | Battery grade | Shanghai Oujin Industrial Co., Ltd. |
| High purity nitrogen | N2 | 99.999% | Chongqing Chaoyang Gas Co., Ltd. |
| Electrolyte | LiPF6/(EC+EMC) | Battery grade | Tianjin Aiweixin Chemical Technology Co., Ltd. |
| Membrane | Celgard-2400 | Battery grade | Celgard LLC |
| Hydrofluoric acid | HF | Analytical pure | Chongqing Chuandong Chemical Co., Ltd. |
Fig.3 (a) SEM image of C; (b) SEM image of Fe2O3; (c) SEM image of Fe2O3/C; (d) elemental mapping of Fe2O3/C: C, O, and Fe were red, biue and green regions, respectively
Fig.5 (a) Electrochemical performance at a current density of 500 mA/g for the Fe2O3/C; (b) galvanostatic charge-discharge curves of Fe2O3/C at 200 mA/g; (c) Nyquist plots of the pure Fe2O3, C and Fe2O3/C after three cycling; (d) C-V curves of Fe2O3/C at 0.1 mV/s
Fig.6 C-V curves of Fe2O3@C (a) and Fe2O3 (b) under different scan rates ranging from 0.2 mV/s to 1.0 mV/s; (c) logarithmic relationship between peak current and scan rate, and corresponding linear fit; contribution rate of pseudocapacitance at different scan rates for Fe2O3@C (d) and Fe2O3 (e)
| [1] | KANG M S, HEO I, KIM S, et al. High-areal-capacity of micron-sized silicon anodes in lithium-ion batteries by using wrinkled-multilayered-graphenes[J]. Energy Storage Materials, 2022, 50: 234-242. |
| [2] | CHEN X, LI H X, YAN Z H, et al. Structure design and mechanism analysis of silicon anode for lithium-ion batteries[J]. Science China Materials, 2019, 62(11): 1515-1536. |
| [3] | SUN X, ZHANG J, ZHANG H R, et al. Co3O4 nanosheets anchored on C/Cu porous microspheres as high-performance anode materials for lithium-ion battery[J]. Science China Materials, 2023, 66(12): 4575-4586. |
| [4] | ZHAO W, CHOI W, YOON W S. Nanostructured electrode materials for rechargeable lithium-ion batteries[J]. Journal of Electrochemical Science and Technology, 2020, 11(3): 195-219. |
| [5] | KIM Y, UM J H, LEE H, et al. Additional lithium storage on dynamic electrode surface by charge redistribution in inactive Ru metal[J]. Small, 2020, 16(1): 1905868. |
| [6] | YANG L, ZHU X, ZHOU Q H, et al. Herringbone packed contorted aromatics with ordered three-dimensional channels as fast-charging and low-temperature lithium-ion battery anodes[J]. Journal of Materials Chemistry A, 2024, 12(12): 7005-7014. |
| [7] | LIU Z, FU H Y, GAO B, et al. In-situ synthesis of Fe2O3/rGO using different hydrothermal methods as anode materials for lithium-ion batteries[J]. Reviews on Advanced Materials Science, 2020, 59(1): 477-486. |
| [8] | YAO J H, YANG Y D, LI Y W, et al. Interconnected α-Fe2O3 nanoparticles prepared from leaching liquor of tin ore tailings as anode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 855: 157288. |
| [9] | WANG J T, YANG X J, WANG Y B, et al. Rational design and synthesis of sandwich-like reduced graphene oxide/Fe2O3/N-doped carbon nanosheets as high-performance anode materials for lithium-ion batteries[J]. Chemical Engineering Science, 2021, 231: 116271. |
| [10] | BAN Q F, LIU Y Y, LIU P Y, et al. Hierarchically nanostructured carbon nanotube/polyimide/mesoporous Fe2O3 nanocomposite for organic-inorganic lithium-ion battery anode[J]. Microporous and Mesoporous Materials, 2022, 335: 111803. |
| [11] | GÓMEZ-URBANO J L, MORENO-FERNÁNDEZ G, ARNAIZ M, et al. Graphene-coffee waste derived carbon composites as electrodes for optimized lithium ion capacitors[J]. Carbon, 2020, 162: 273-282. |
| [12] | QIU D P, KANG C H, LI M, et al. Biomass-derived mesopore-dominant hierarchical porous carbon enabling ultra-efficient lithium ion storage[J]. Carbon, 2020, 162: 595-603. |
| [13] | GANGULY D, RAMAPRABHU S. Facile synthesis and electrochemical properties of α-Fe2O3 nanoparticles/etched carbon nanotube composites as anode for lithium-ion batteries[J]. Materials Chemistry and Physics, 2021, 267: 124664. |
| [14] | MA J, KONG Y, LIU S C, et al. Flexible phosphorus-doped graphene/metal-organic framework-derived porous Fe2O3 anode for lithium-ion battery[J]. ACS Applied Energy Materials, 2020, 3(12): 11900-11906. |
| [15] | WU S T, JIN Y C, WANG D, et al. Fe2O3/carbon derived from peanut shell hybrid as an advanced anode for high performance lithium ion batteries[J]. Journal of Energy Storage, 2023, 68: 107731. |
| [16] | YU K F, WANG J J, WANG X F, et al. Sustainable application of biomass by-products: corn straw-derived porous carbon nanospheres using as anode materials for lithium ion batteries[J]. Materials Chemistry and Physics, 2020, 243: 122644. |
| [17] | FROMM O, HECKMANN A, RODEHORST U C, et al. Carbons from biomass precursors as anode materials for lithium ion batteries: new insights into carbonization and graphitization behavior and into their correlation to electrochemical performance[J]. Carbon, 2018, 128: 147-163. |
| [18] | DU Y F, SUN G H, LI Y, et al. Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity[J]. Carbon, 2021, 178: 243-255. |
| [19] | KIETISIRIROJANA N, TUNKASIRI T, PENGPAT K, et al. Synthesis of mesoporous carbon powder from gold beard grass pollen for use as an anode for lithium-ion batteries[J]. Microporous and Mesoporous Materials, 2022, 331: 111565. |
| [20] | ZHU L K, LUO B, MEN L J, et al. A green synthesis strategy for lithium/sodium-ion battery anodes: morphology and structure engineering in biochar to boost comprehensive electrochemical performance[J]. Green Chemistry, 2025, 27(7): 2078-2091. |
| [21] |
XU K Q, LI Y S, XIONG J W, et al. Activated amorphous carbon with high-porosity derived from camellia pollen grains as anode materials for lithium/sodium ion batteries[J]. Frontiers in Chemistry, 2018, 6: 366.
DOI PMID |
| [22] | SUN X L, WANG X H, FENG N, et al. A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100: 181-185. |
| [23] | XU R X, ZHAO Y P, LIU G H, et al. N/O co-doped porous interconnected carbon nanosheets from the co-hydrothermal treatment of soybean stalk and nickel nitrate for high-performance supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 558: 211-219. |
| [24] |
BALAN A P, RADHAKRISHNAN S, WOELLNER C F, et al. Exfoliation of a non-van der Waals material from iron ore hematite[J]. Nature Nanotechnology, 2018, 13(7): 602-609.
DOI PMID |
| [25] | SUN M C, SUN M F, YANG H X, et al. Porous Fe2O3 nanotubes as advanced anode for high performance lithium ion batteries[J]. Ceramics International, 2017, 43(1): 363-367. |
| [26] | CHEN J S, ZHU T, YANG X H, et al. Top-down fabrication of α-Fe2O3 single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties[J]. Journal of the American Chemical Society, 2010, 132(38): 13162-13164. |
| [27] | ZHANG C L, JIANG Z H, LU B R, et al. MoS2 nanoplates assembled on electrospun polyacrylonitrile-metal organic framework-derived carbon fibers for lithium storage[J]. Nano Energy, 2019, 61: 104-110. |
| [28] | ZHANG X, ZHOU J, ZHENG Y Y, et al. MoSe2-CoSe2/N-doped graphene aerogel nanocomposites with high capacity and excellent stability for lithium-ion batteries[J]. Journal of Power Sources, 2019, 439: 227112. |
| [29] | ZHANG X, LIU H H, PETNIKOTA S, et al. Electrospun Fe2O3-carbon composite nanofibers as durable anode materials for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(28): 10835-10841. |
| [30] | WANG Y Z, HAN J S, GU X X, et al. Ultrathin Fe2O3 nanoflakes using smart chemical stripping for high performance lithium storage[J]. Journal of Materials Chemistry A, 2017, 5(35): 18737-18743. |
| [31] | 张钟元. 氧化铁基纳米复合材料合成及其嵌/脱锂性能[D]. 大连: 大连理工大学, 2021. |
| ZHANG Z Y. Synthesis of iron-oxide-based nanocomposites and the lithium intercalation/deintercalation performances[D]. Dalian: Dalian University of Technology, 2021 (in Chinese). | |
| [32] |
PIAO Y Z, KIM H S, SUNG Y E, et al. Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries[J]. Chemical Communications, 2010, 46(1): 118-120.
DOI PMID |
| [33] | ZHANG L H, WEI T, JIANG Z M, et al. Electrostatic interaction in electrospun nanofibers: double-layer carbon protection of CoFe2O4 nanosheets enabling ultralong-life and ultrahigh-rate lithium ion storage[J]. Nano Energy, 2018, 48: 238-247. |
| [34] | SUBRAMANIYAM C M, SRINIVASAN N R, TAI Z X, et al. Self-assembled porous carbon microparticles derived from halloysite clay as a lithium battery anode[J]. Journal of Materials Chemistry A, 2017, 5(16): 7345-7354. |
| [1] | ZHANG Lin, CAI Qianghao, DAI Hanwen, WANG Yanming, WANG Fei. Lithium Storage Properties of Nanosized Hollow Cubic ZnMn2O4/rGO Composite Materials [J]. Journal of Synthetic Crystals, 2025, 54(6): 1068-1077. |
| [2] | HU Xuzhao, XU Xueyan, XU Bing, LIAO Shengwen, ZHANG Jiaqi, XIA Ailin. Structure and Morphology Evolution of Heat Treated Goethite [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 165-174. |
| [3] | LIU Yuqiu, YANG Juan, LI Xin, LONG Huan, WU Xianwen, WU Xiangsi. Study on the Modification of Zinc Anode with LaF3 Coating in Aqueous Zinc-Ion Batteries [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 1078-1085. |
| [4] | LIU Hui, YAN Gongqin, LAN Chunbo, ZHANG Ziyang. Synthesis and Performance of Cu Doping P2-Type Na0.67Ni0.33Mn0.67O2 Used as Cathode Material for Sodium Ion Batteries [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 145-153. |
| [5] | ZHANG Wanhe, HU Jianying, ZHOU Tao, LYU Yiting, WANG Keliang. First-Principles Study on Nb2N as Anode Material for Magnesium and Aluminum Ion Batteries [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(8): 1451-1457. |
| [6] | WANG Jun, ZHAO Yu, ZHENG Yi, ZHANG Jun, LIU Xiaoyan. Carbon Coated CoO Nanowires Grown on Carbon Cloth as Flexible Binder-Free Lithium-Ion Battery Anodes [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 1154-1160. |
| [7] | YANG Jiangtao, LI Xuan, CHEN Zehong, ZHANG Wei, WANG Zhongde. Preparation of Ti/SnO2-IrO2 Electrode and Its Electrochemical Degradation of p-Chlorophenol [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(6): 1076-1084. |
| [8] | XU Linlin, YU Haiying, ZHANG Yongfeng. Research Progress of Porous Silicon Preparation and Its Application in Lithium Ion Batteries [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(11): 1983-1993. |
| [9] | GU Yang, WANG Zhen, WU Hongkun, XIAO Jie, ZENG Xiaoyuan. Research Progress of Key Materials for Lithium Carbon Dioxide Batteries [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(6): 1170-1179. |
| [10] | ZHOU Yangyang, ZHANG Ziying, WENG Ying. Synthesis of Ultrafine ZnO Nanowire Arrays and Its Electrochemical Performance [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(3): 536-541. |
| [11] | WANG Jun, ZHAO Yu, FAN Baoyan, ZHANG Jun, XING An, LIU Xiaoyan. CoO Porous Nanosheets Array/Carbon Cloth as Flexible Anode Material for Lithium-Ion Batteries [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(11): 2150-2155. |
| [12] | XIA Donglin, GUO Jinhua. Preparation and Properties of CuInS2 Quantum Dot-Sensitized ZnO Based Photoanode [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2274-2281. |
| [13] | YU Limin, MIAO Chang, LI Rui, TAN Yi, XIAO Wei. Electrochemical Performance of Metal Tin Film Anodes Prepared by Electrodeposition [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2344-2349. |
| [14] | LI Dong, GAO Caiyun. Synthesis by Functional-Template Induced Methodology and Photoelectrochemical Performance of Mesoporous Tungsten Trioxide [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2350-2357. |
| [15] | LI Ling-fang;ZENG Wu-jun;LIU Wan-feng. Synthesis of Ti Ion Doped LiFePO4/C Composite Material Based on Polymerization Reaction [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(8): 1614-1618. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS