Journal of Synthetic Crystals ›› 2026, Vol. 55 ›› Issue (1): 111-119.DOI: 10.16553/j.cnki.issn1000-985x.2025.0129
• Research Articles • Previous Articles Next Articles
WANG Chuankun1,2(
), DING Xiya1, LIU Bangzhen1, HAO Yanling1,2
Received:2025-06-16
Online:2026-01-20
Published:2026-02-05
CLC Number:
WANG Chuankun, DING Xiya, LIU Bangzhen, HAO Yanling. Performance Optimization of Perovskite Solar Cells Based on the Novel Hole-Transport Layer V2O5[J]. Journal of Synthetic Crystals, 2026, 55(1): 111-119.
| Parameter | V2O5[ | CH3NH3Pb(I1-x Cl x )3[ | ZnO-NR[ | FTO[ | Spiro-OMeTAD[ |
|---|---|---|---|---|---|
| d/μm | 0.3 | 0.5 | 0.2 | 0.3 | 0.3 |
| Eg /eV | 2.2 | 1.5 | 3.47 | 3.2 | 2.91 |
| χ/eV | 3.4 | 3.93 | 4.3 | 4.4 | 2.2 |
| εr | 8.0 | 6.5 | 9 | 9 | 3 |
| Nc/cm-3 | 9.2×1012 | 2.2×1017 | 2.0×1018 | 2.2×1018 | 2.8×1019 |
| Nv/cm-3 | 5×1020 | 1.9×1019 | 1.8×1019 | 1.9×1019 | 1.0×1019 |
| µe/(cm2·V-1·s-1) | 1×102 | 1×107 | 1×107 | 1×107 | 1×107 |
| µn/(cm2·V-1·s-1) | 2×10-4 | 2×10-1 | 2 | 20 | 1.2×10-4 |
| µp/(cm2·V-1·s-1) | 2×10-4 | 2×10-1 | 1 | 80 | 1.2×10-4 |
| ND/cm-3 | 0 | 0 | 1×1019 | 1.0×1018 | 0 |
| NA/cm-3 | 1×1022 | 1.0×1010 | 0 | 0 | 2.2×1018 |
| Nt/cm-3 | 1×1015 | 1×1015 | 1×1015 | 1×1015 | 1.0×1015 |
Table 1 Input parameters in simulating devices
| Parameter | V2O5[ | CH3NH3Pb(I1-x Cl x )3[ | ZnO-NR[ | FTO[ | Spiro-OMeTAD[ |
|---|---|---|---|---|---|
| d/μm | 0.3 | 0.5 | 0.2 | 0.3 | 0.3 |
| Eg /eV | 2.2 | 1.5 | 3.47 | 3.2 | 2.91 |
| χ/eV | 3.4 | 3.93 | 4.3 | 4.4 | 2.2 |
| εr | 8.0 | 6.5 | 9 | 9 | 3 |
| Nc/cm-3 | 9.2×1012 | 2.2×1017 | 2.0×1018 | 2.2×1018 | 2.8×1019 |
| Nv/cm-3 | 5×1020 | 1.9×1019 | 1.8×1019 | 1.9×1019 | 1.0×1019 |
| µe/(cm2·V-1·s-1) | 1×102 | 1×107 | 1×107 | 1×107 | 1×107 |
| µn/(cm2·V-1·s-1) | 2×10-4 | 2×10-1 | 2 | 20 | 1.2×10-4 |
| µp/(cm2·V-1·s-1) | 2×10-4 | 2×10-1 | 1 | 80 | 1.2×10-4 |
| ND/cm-3 | 0 | 0 | 1×1019 | 1.0×1018 | 0 |
| NA/cm-3 | 1×1022 | 1.0×1010 | 0 | 0 | 2.2×1018 |
| Nt/cm-3 | 1×1015 | 1×1015 | 1×1015 | 1×1015 | 1.0×1015 |
| Parameter | V2O5/CH3NH3Pb(I1-x Cl x )3 | H3NH3Pb(I1-x Cl x )3/ZnO-NR | ZnO-NR/FTO |
|---|---|---|---|
| Type of defect | Neutral | Neutral | Neutral |
| Cap. cross section (CCS) electrons/cm2 | 1×10-19 | 1×10-19 | 1×10-19 |
| CCS holes/cm2 | 1×10-19 | 1×10-19 | 1×10-19 |
| Distributions of energy | Single | Single | Single |
| Reference for defect energy level Et | Above the highest Ev | Above the highest Ev | Above the highest Ev |
| Total density/cm-2 | 1×108 | 1×108 | 1×1010 |
Table 2 Interface parameters between different layers of materials
| Parameter | V2O5/CH3NH3Pb(I1-x Cl x )3 | H3NH3Pb(I1-x Cl x )3/ZnO-NR | ZnO-NR/FTO |
|---|---|---|---|
| Type of defect | Neutral | Neutral | Neutral |
| Cap. cross section (CCS) electrons/cm2 | 1×10-19 | 1×10-19 | 1×10-19 |
| CCS holes/cm2 | 1×10-19 | 1×10-19 | 1×10-19 |
| Distributions of energy | Single | Single | Single |
| Reference for defect energy level Et | Above the highest Ev | Above the highest Ev | Above the highest Ev |
| Total density/cm-2 | 1×108 | 1×108 | 1×1010 |
Fig.3 Photovoltaic curve of perovskite solar cells (a), variation of external quantum efficiency with wavelength (b), and variation of energy levels with position (c)
| [1] | RONG Y G, HU Y, MEI A Y, et al. Challenges for commercializing perovskite solar cells[J]. Science, 2018, 361(6408): eaat8235. |
| [2] | KIM J Y, LEE J W, JUNG H S, et al. High-efficiency perovskite solar cells[J]. Chemical Reviews, 2020, 120(15): 7867-7918. |
| [3] | WU T H, QIN Z Z, WANG Y B, et al. The main progress of perovskite solar cells in 2020—2021[J]. Nano-Micro Letters, 2021, 13(1): 152. |
| [4] | KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. |
| [5] | ZHENG Y T, LI Y R, ZHUANG R S, et al. Towards 26% efficiency in inverted perovskite solar cells via interfacial flipped band bending and suppressed deep-level traps[J]. Energy & Environmental Science, 2024, 17(3): 1153-1162. |
| [6] | RAI S, PANDEY B K, DWIVEDI D K. Modeling of highly efficient and low cost CH3NH3Pb(I1- x Cl x )3 based perovskite solar cell by numerical simulation[J]. Optical Materials, 2020, 100: 109631. |
| [7] | PÉREZ-GUTIÉRREZ E, PERCINO M J, SANTOS P, et al. Compositional study of mixed halide perovskite films CH3NH3Pb(I1- x Br x )3 and CH3NH3Pb(I1- x Cl x )3 prepared by close space sublimation[J]. Materials Today Communications, 2020, 25: 101384. |
| [8] | SELIM M S, ELSEMAN A M, HAO Z F. ZnO nanorods: an advanced cathode buffer layer for inverted perovskite solar cells[J]. ACS Applied Energy Materials, 2020, 3(12): 11781-11791. |
| [9] | DAS T, NAG R, RANA N K, et al. Effect of transition metal doping in the ZnO nanorod on the efficiency of the electron transport layer in semitransparent CsPbBr3 perovskite solar cells[J]. Energy & Fuels, 2023, 37(14): 10642-10651. |
| [10] | MAKENALI M, KAZEMINEZHAD I, ROGHABADI F A, et al. Efficiency improvement of perovskite solar cells by charge transport balancing using length tunable ZnO nanorods and optimized perovskite morphology[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111206. |
| [11] | VISHNUWARAN M, RAMACHANDRAN K, SAKTHIVEL P. An augmented lead-free Perovskite solar cell based on FASnI3 using V2O5 as HTL[J]. Physica Scripta, 2024, 99(11): 115029. |
| [12] | KUMAR K, GIRI P. Efficient solar trapping with vanadium oxide hole transport layer in perovskite solar cells[J]. Physica Scripta, 2025, 100(3): 035531. |
| [13] | PARK H, JEONG S, KIM E, et al. Hole-transporting vanadium-containing oxide (V2O5- x ) interlayers enhance stability of α-FAPbI3-based perovskite solar cells (∼23%)[J]. ACS Applied Materials & Interfaces, 2022, 14(37): 42007-42017. |
| [14] | GULOMOVA I, ACCOUCHE O, ALIEV R, et al. Optimizing geometry and ETL materials for high-performance inverted perovskite solar cells by TCAD simulation[J]. Nanomaterials, 2024, 14(15): 1301. |
| [15] | SMUCKER J, GONG J W. A comparative study on the band diagrams and efficiencies of silicon and perovskite solar cells using wxAMPS and AMPS-1D[J]. Solar Energy, 2021, 228: 187-199. |
| [16] | 王传坤, 陆成伟, 欧阳雨洁, 等. Sn基CH3NH3SnI3钙钛矿太阳能电池性能计算与优化[J]. 人工晶体学报, 2023, 52(11): 2076-2084. |
| WANG C K, LU C W, OUYANG Y J, et al. Optimization and numerical simulation of Sn-based CH3NH3SnI3 perovskite solar cell[J]. Journal of Synthetic Crystals, 2023, 52(11): 2076-2084 (in Chinese). | |
| [17] | PÉREZ-GUTIÉRREZ E, PERCINO M J, SANTOS P, et al. Compositional study of mixed halide perovskite films CH3NH3Pb(I1- x Br x )3 and CH3NH3Pb(I1- x Cl x )3 prepared by close space sublimation[J]. Materials Today Communications, 2020, 25: 101384. |
| [18] | ALBALAWI H, MUSTAFA G M, AZEEM W, et al. Optimization of power conversion efficiency of FTO/WS2/Cs2SnI6/V2O5/Au Pb-free solar cell with all-inorganic transport layers[J]. Inorganic Chemistry Communications, 2025, 176: 114245. |
| [19] | AHMMED S, AKTAR A, RAHMAN M H, et al. Design and simulation of a high-performance CH3NH3Pb(I1- x Cl x )3-based perovskite solar cell using a CeO x electron transport layer and NiO hole transport layer[J]. Semiconductor Science and Technology, 2021, 36(3): 035002. |
| [20] | ALAM I, MOLLICK R, ASHRAF MALI. Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO nanorod and P3HT as the charge transport layers[J]. Physica B: Condensed Matter, 2021, 618: 413187. |
| [21] | BOUAZIZI S, TLILI W, BOUICH A, et al. Design and efficiency enhancement of FTO/PC60BM/CsSn0.5Ge0.5I3/Spiro-OMeTAD/Au perovskite solar cell utilizing SCAPS-1D Simulator[J]. Materials Research Express, 2022, 9(9): 096402. |
| [22] | MINEMOTO T, KAWANO Y, NISHIMURA T, et al. Theoretical analysis of band alignment at back junction in Sn-Ge perovskite solar cells with inverted p-i-n structure[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110268. |
| [23] | DURODOLA O M, UGWU C, DANLADI E. Highly efficient lead-free perovskite solar cell based on magnesium-doped copper delafossite hole transport layer: a SCAPS-1D framework prospect[J]. Emergent Materials, 2023, 6(5): 1665-1684. |
| [24] | BHATTARAI S, BARMAN P, BORAH A, et al. Efficiency enhancement of hybrid-solar cell by optimizing CuSCN and V2O5 based dual hole transport layer[J]. Solar Energy, 2024, 275: 112652. |
| [25] | SHOCKLEY W, QUEISSER H. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519. |
| [1] | ZHANG Shuyi, LIU Gengling, WANG Hao, LU Yue, JIANG Xianyuan, LI Wenzhuo, LIU Cong, LYU Yingbo, WU Zhongchen, LIU Dong, CHEN Yao. Research Progress of Tin-Based Perovskite Crystals and Devices [J]. Journal of Synthetic Crystals, 2025, 54(7): 1189-1207. |
| [2] | HUANG Cheng, QIAN Yannan. Multifunctional Additive of Sodium 4-Chlorobenzenesulfonate Enables Efficient Carbon-Based CsPbI2Br Perovskite Solar Cells [J]. Journal of Synthetic Crystals, 2025, 54(12): 2190-2199. |
| [3] | JIANG Jingwen, LUO Yuanxing, WANG Meizhen, HUANG Kewen, LUO Guoping, ZHU Weiling. Simulation Study on the Photoelectric Performance of Formamidinium Tin Iodide Perovskite Solar Cells [J]. Journal of Synthetic Crystals, 2025, 54(12): 2200-2208. |
| [4] | CHENG Youliang, DU Huibin, ZHANG Zhongbao, WANG Kai. Optimization of Electronic Transport Model and Device Performance in Tin Dioxide-Based Dye-Sensitized Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1629-1639. |
| [5] | ZHAO Ya, ZHUANG Zhong, WEI Mengyuan, JIANG Qingsong, YANG Xiao, XUN Wei, LIU Yuhao. Effect of Sulfur-Rich Precursor Solution on Photovoltaic Performance of CuPbSbS3 Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1640-1647. |
| [6] | ZHANG Bo, SONG Zhicheng, NI Yufeng, WEI Kaifeng. Boron Doping Technology for the Front Polysilicon Layer of Full TOPCon Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(2): 329-335. |
| [7] | LI Hong, LIAO Xin, HOU Jing, XU Zhong. Interface Defects of Perovskite Solar Cells and Their Suppression Methods [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 38-50. |
| [8] | YANG Lu, SONG Zhicheng, NI Yufeng, ZHANG Ting, WEI Kaifeng, RUAN Miao, SHI Huijun, ZHENG Leijie. Process Study on Selective Emitter of TOPCon Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 138-144. |
| [9] | LI Jianing, GE Xin, HUANG Zixuan, LIU Zhen, WANG Pengyang, SHI Biao, ZHAO Ying, ZHANG Xiaodan. Effect of Sputtered NiOx Modified by Self-Assembled Layer on Performance of Blade-Coated Wide-Bandgap Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(8): 1458-1466. |
| [10] | YU Na, XU Congyan, LI Qiulian, CHEN Yufei, ZHAO Yonggang, ZHOU Zhineng, YANG Xin, WANG Shurong. Effect of a Small Amount of Ge on the Properties of Cu2ZnSnSe4 Thin Films and Devices [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(3): 460-466. |
| [11] | HUANG Xiaokun, YANG Aijun, LI Jiansheng, JIANG Linqin, QIU Yu. Performance of Perovskite Solar Cells Based on CuS Hole Transport Materials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(3): 485-492. |
| [12] | WU Zhonghang, SUN Bin, HUANG Gang, QU Qian, TANG Yiwen, SUN Jiuai. Advancement of Cadmium Zinc Telluride Detector and Its Application in SPECT [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(2): 196-207. |
| [13] | LU Hui, WEN Qian, WANG Jiaqi, SHA Simiao, WANG Kang, SUN Weidong, WU Jiandong, MA Jinfu, HOU Chunping, SHENG Zhilin, FENG Weiguang. Research Progress of Perovskite Solar Cells Based on ZnO as Electron Transport Layer [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(2): 208-219. |
| [14] | WANG Chuankun, LU Chengwei, OUYANG Yujie, ZHANG Shengjun, HAO Yanling. Optimization and Numerical Simulation of Sn-Based CH3NH3SnI3 Perovskite Solar Cell [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(11): 2076-2084. |
| [15] | LU Hui, LI Tong, WEN Qian, SHA Simiao, MA Simin, XUE Xiaoyang, WANG Kang, SHENG Zhilin, MA Jinfu. Effect of Salicylic Acid Additive on the Properties of All-Inorganic Tin-Lead Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(8): 1387-1395. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS