Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (12): 2200-2208.DOI: 10.16553/j.cnki.issn1000-985x.2025.0137
• Research Articles • Previous Articles Next Articles
JIANG Jingwen(
), LUO Yuanxing, WANG Meizhen, HUANG Kewen, LUO Guoping(
), ZHU Weiling
Received:2025-07-01
Online:2025-12-20
Published:2026-01-04
CLC Number:
JIANG Jingwen, LUO Yuanxing, WANG Meizhen, HUANG Kewen, LUO Guoping, ZHU Weiling. Simulation Study on the Photoelectric Performance of Formamidinium Tin Iodide Perovskite Solar Cells[J]. Journal of Synthetic Crystals, 2025, 54(12): 2200-2208.
| Parameter | PEDOT∶PSS | FASnI3 | PCBM | CuI | CuSCN | NiO | Cu2O |
|---|---|---|---|---|---|---|---|
| Thickness, d/nm | 50 | 350 | 50 | 50 | 50 | 50 | 50 |
| Bandgap, Eg/eV | 2.88 | 1.41 | 2.00 | 3.10 | 3.60 | 3.60 | 2.10 |
| Electron affinity, χ/eV | 2.05 | 3.58 | 3.90 | 2.10 | 1.70 | 1.80 | 3.20 |
| Dielectric constant, εr | 3.0 | 8.2 | 3.9 | 6.5 | 10.0 | 11.7 | 7.1 |
| Effective conduction band density, NC/cm-3 | 2.2×1018 | 1×1018 | 2.5×1021 | 2.2×1018 | 2.2×1019 | 2.5×1020 | 2×1017 |
| Effective valence band density, NV/cm-3 | 1.8×1018 | 1×1018 | 2.5×1021 | 1.8×1018 | 1.8×1019 | 2.5×1020 | 1×1019 |
| Electron mobility, μn/(cm2·V-1·s-1) | 2×10-4 | 22 | 0.2 | 1×102 | 1×102 | 2.8 | 2×102 |
| Hole mobility, μp/(cm2·V-1·s-1) | 2×10-4 | 22 | 0.2 | 4.39×101 | 2.5×101 | 2.8 | 8×101 |
| Donor doping concentration, ND/cm-3 | — | — | 2.93×1017 | — | — | — | — |
| Acceptor doping concentration, NA/cm-3 | 2×1019 | 1×1017 | 0 | 1×1018 | 1×1018 | 3×1018 | 1×1018 |
| Defect concentration, Nt/cm-3 | 1×1015 | 2×1015 | 2×1015 | 1×1015 | 1×1015 | 1×1014 | 1×1017 |
| Capture cross section for elctron, σn/cm-2 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 |
| Capture cross section for hole, σp/cm-2 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 |
Table 1 Parameters for the simulation study of FASnI3 perovskite solar cell
| Parameter | PEDOT∶PSS | FASnI3 | PCBM | CuI | CuSCN | NiO | Cu2O |
|---|---|---|---|---|---|---|---|
| Thickness, d/nm | 50 | 350 | 50 | 50 | 50 | 50 | 50 |
| Bandgap, Eg/eV | 2.88 | 1.41 | 2.00 | 3.10 | 3.60 | 3.60 | 2.10 |
| Electron affinity, χ/eV | 2.05 | 3.58 | 3.90 | 2.10 | 1.70 | 1.80 | 3.20 |
| Dielectric constant, εr | 3.0 | 8.2 | 3.9 | 6.5 | 10.0 | 11.7 | 7.1 |
| Effective conduction band density, NC/cm-3 | 2.2×1018 | 1×1018 | 2.5×1021 | 2.2×1018 | 2.2×1019 | 2.5×1020 | 2×1017 |
| Effective valence band density, NV/cm-3 | 1.8×1018 | 1×1018 | 2.5×1021 | 1.8×1018 | 1.8×1019 | 2.5×1020 | 1×1019 |
| Electron mobility, μn/(cm2·V-1·s-1) | 2×10-4 | 22 | 0.2 | 1×102 | 1×102 | 2.8 | 2×102 |
| Hole mobility, μp/(cm2·V-1·s-1) | 2×10-4 | 22 | 0.2 | 4.39×101 | 2.5×101 | 2.8 | 8×101 |
| Donor doping concentration, ND/cm-3 | — | — | 2.93×1017 | — | — | — | — |
| Acceptor doping concentration, NA/cm-3 | 2×1019 | 1×1017 | 0 | 1×1018 | 1×1018 | 3×1018 | 1×1018 |
| Defect concentration, Nt/cm-3 | 1×1015 | 2×1015 | 2×1015 | 1×1015 | 1×1015 | 1×1014 | 1×1017 |
| Capture cross section for elctron, σn/cm-2 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 |
| Capture cross section for hole, σp/cm-2 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 | 1×10-15 |
| Parameter | HTL/FASnI3 | FASnI3/ETL | FASnI3 |
|---|---|---|---|
| Defect style | Neutral | Neutral | Neutral |
| Energetic distribution | Single | Single | Gaussian |
| Energy level with respect to EV/eV | 0.6 | 0.6 | 0.6 |
| Characteristic energy/eV | 0.1 | 0.1 | 0.1 |
| Total density/cm-3 | 2.5×1014 | 2.5×1014 | 2.0×1015 |
Table 2 Defect parameter for the simulation study on FASnI3 perovskite solar cell
| Parameter | HTL/FASnI3 | FASnI3/ETL | FASnI3 |
|---|---|---|---|
| Defect style | Neutral | Neutral | Neutral |
| Energetic distribution | Single | Single | Gaussian |
| Energy level with respect to EV/eV | 0.6 | 0.6 | 0.6 |
| Characteristic energy/eV | 0.1 | 0.1 | 0.1 |
| Total density/cm-3 | 2.5×1014 | 2.5×1014 | 2.0×1015 |
| HTL | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
|---|---|---|---|---|
| CuI | 0.570 | 26.00 | 71.76 | 10.62 |
| CuSCN | 0.569 | 26.08 | 60.83 | 9.03 |
| NiO | 0.568 | 26.08 | 56.30 | 8.34 |
| PEDOT∶PSS | 0.564 | 23.19 | 73.07 | 9.56 |
| Cu2O | 0.538 | 24.81 | 61.73 | 8.24 |
Table 3 Photoelectric properties of FASnI3 perovskite solar cells with various HTL
| HTL | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
|---|---|---|---|---|
| CuI | 0.570 | 26.00 | 71.76 | 10.62 |
| CuSCN | 0.569 | 26.08 | 60.83 | 9.03 |
| NiO | 0.568 | 26.08 | 56.30 | 8.34 |
| PEDOT∶PSS | 0.564 | 23.19 | 73.07 | 9.56 |
| Cu2O | 0.538 | 24.81 | 61.73 | 8.24 |
| [1] | WANG D, LIU Z X, QIAO Y, et al. Rigid molecules anchoring on NiO x enable >26% efficiency perovskite solar cells[J]. Joule, 2025, 9(3): 101815. |
| [2] | CORREA-BAENA J P, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells[J]. Science, 2017, 358(6364): 739-744. |
| [3] | LIU H R, ZHANG Z H, ZUO W W, et al. Pure tin halide perovskite solar cells: focusing on preparation and strategies[J]. Advanced Energy Materials, 2023, 13(3): 2202209. |
| [4] | 曾文博, 冯 琳, 李国辉, 等. 无铅钙钛矿光电子器件研究进展[J]. 激光与红外, 2022, 52(5): 627-635. |
| ZENG W B, FENG L, LI G H, et al. Research progress on lead-free perovskite optoelectronic devices[J]. Laser & Infrared, 2022, 52(5): 627-635 (in Chinese). | |
| [5] | WU T H, LIU X, LUO X H, et al. Lead-free tin perovskite solar cells[J]. Joule, 2021, 5(4): 863-886. |
| [6] | LIAO W Q, ZHAO D W, YU Y, et al. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%[J]. Advanced Materials, 2016, 28(42): 9333-9340. |
| [7] | CHEN J F, LUO J F, HOU E L, et al. Efficient tin-based perovskite solar cells with trans-isomeric fulleropyrrolidine additives[J]. Nature Photonics, 2024, 18(5): 464-470. |
| [8] | SHI Y D, ZHU Z H, MIAO D H, et al. Interfacial dipoles boost open-circuit voltage of tin halide perovskite solar cells[J]. ACS Energy Letters, 2024, 9(4): 1895-1897. |
| [9] | MENG X Y, WANG Y B, LIN J B, et al. Surface-controlled oriented growth of FASnI3 crystals for efficient lead-free perovskite solar cells[J]. Joule, 2020, 4(4): 902-912. |
| [10] | YU B B, CHEN Z H, ZHU Y D, et al. Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%[J]. Advanced Materials, 2021, 33(36): 2102055. |
| [11] | JIANG X Y, WANG F, WEI Q, et al. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design[J]. Nature Communications, 2020, 11(1): 1245. |
| [12] | KHAN F, FATIMA RASHEED J, AHMAD V, et al. Studies on the performance of FASnI3∶Zn2+-based lead-free perovskite solar cells: a numerical simulation[J]. Optik, 2024, 306: 171810. |
| [13] | KUMAR M, RAJ A, KUMAR A, et al. An optimized lead-free formamidinium Sn-based perovskite solar cell design for high power conversion efficiency by SCAPS simulation[J]. Optical Materials, 2020, 108: 110213. |
| [14] | ALZOUBI T, KADHEM W J, GHARRAM MAL, et al. Advanced optoelectronic modeling and optimization of HTL-free FASnI3/C60 perovskite solar cell architecture for superior performance[J]. Nanomaterials, 2024, 14(12): 1062. |
| [15] | REHMAN A U, AFZAL S, NAEEM I, et al. Performance optimization of FASnI3 based perovskite solar cell through SCAPS-1D simulation[J]. Hybrid Advances, 2024, 7: 100301. |
| [16] | 甘永进, 邱贵新, 曾昭祥, 等. 基于FASnI3的钙钛矿太阳电池仿真研究[J]. 电源技术, 2024, 48(10): 2058-2065. |
| GAN Y J, QIU G X, ZENG Z X, et al. Simulation study of perovskite solar cells based on FASnI3 [J]. Chinese Journal of Power Sources, 2024, 48(10): 2058-2065 (in Chinese). | |
| [17] | YU W J, ZOU Y, WANG H T, et al. Breaking the bottleneck of lead-free perovskite solar cells through dimensionality modulation[J]. Chemical Society Reviews, 2024, 53(4): 1769-1788. |
| [18] | BURGELMAN M, DECOCK K, KHELIFI S, et al. Advanced electrical simulation of thin film solar cells[J]. Thin Solid Films, 2013, 535: 296-301. |
| [19] | HOSSAIN M K, RUBEL M H K, TOKI G F I, et al. Effect of various electron and hole transport layers on the performance of CsPbI3-based perovskite solar cells: a numerical investigation in DFT, SCAPS-1D, and wxAMPS frameworks[J]. ACS Omega, 2022, 7(47): 43210-43230. |
| [20] | RAN C X, GAO W Y, LI J R, et al. Conjugated organic cations enable efficient self-healing FASnI3 solar cells[J]. Joule, 2019, 3(12): 3072-3087. |
| [21] | MISHRA K P, PANDEY B K, PANDEY S. Unveiling the potential of FASnI3 solar cells through advanced charge transport materials: a SCAPS-1D perspective[J]. Journal of Alloys and Compounds, 2024, 1006: 176283. |
| [22] | SUN Q D, SADHU A, LIE S, et al. Critical review of Cu-based hole transport materials for perovskite solar cells: from theoretical insights to experimental validation[J]. Advanced Materials, 2024, 36(31): 2402412. |
| [23] | 肖建敏, 袁吉仁, 王 鹏, 等. 铅基卤化物钙钛矿太阳电池的模拟研究[J]. 人工晶体学报, 2022, 51(6): 1051-1058. |
| XIAO J M, YUAN J R, WANG P, et al. Simulation of lead-based halide perovskite solar cells[J]. Journal of Synthetic Crystals, 2022, 51(6): 1051-1058 (in Chinese). | |
| [24] | SRIVASTAVA A, SAMAJDAR D P, SHARMA D. Plasmonic effect of different nanoarchitectures in the efficiency enhancement of polymer based solar cells: a review[J]. Solar Energy, 2018, 173: 905-919. |
| [25] | MINEMOTO T, MURATA M. Theoretical analysis on effect of band offsets in perovskite solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 133: 8-14. |
| [26] | WANG T Y, LOI H L, CAO J P, et al. High open circuit voltage over 1 V achieved in tin-based perovskite solar cells with a 2D/3D vertical heterojunction[J]. Advanced Science, 2022, 9(18): 2200242. |
| [27] | CHEN Y L, TONG Y, YANG F, et al. Modulating nucleation and crystal growth of tin perovskite films for efficient solar cells[J]. Nano Letters, 2024, 24(18): 5460-5466. |
| [28] | KAVITHA M V, SUDHEER SEBASTIAN K. Device modelling and performance enhancement of FASnI3-based perovskite solar cell with diverse, compatible charge transport layers[J]. Results in Optics, 2025, 18: 100783. |
| [29] | ZAI H C, YANG P F, SU J, et al. Wafer-scale monolayer MoS2 film integration for stable, efficient perovskite solar cells[J]. Science, 2025, 387(6730): 186-192. |
| [30] | RANJAN R, ANAND N, TRIPATHI M N, et al. SCAPS study on the effect of various hole transport layer on highly efficient 31.86% eco-friendly CZTS based solar cell[J]. Scientific Reports, 2023, 13(1): 18411. |
| [1] | ZHANG Shuyi, LIU Gengling, WANG Hao, LU Yue, JIANG Xianyuan, LI Wenzhuo, LIU Cong, LYU Yingbo, WU Zhongchen, LIU Dong, CHEN Yao. Research Progress of Tin-Based Perovskite Crystals and Devices [J]. Journal of Synthetic Crystals, 2025, 54(7): 1189-1207. |
| [2] | HUANG Cheng, QIAN Yannan. Multifunctional Additive of Sodium 4-Chlorobenzenesulfonate Enables Efficient Carbon-Based CsPbI2Br Perovskite Solar Cells [J]. Journal of Synthetic Crystals, 2025, 54(12): 2190-2199. |
| [3] | LI Hong, LIAO Xin, HOU Jing, XU Zhong. Interface Defects of Perovskite Solar Cells and Their Suppression Methods [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 38-50. |
| [4] | LI Jianing, GE Xin, HUANG Zixuan, LIU Zhen, WANG Pengyang, SHI Biao, ZHAO Ying, ZHANG Xiaodan. Effect of Sputtered NiOx Modified by Self-Assembled Layer on Performance of Blade-Coated Wide-Bandgap Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(8): 1458-1466. |
| [5] | HUANG Xiaokun, YANG Aijun, LI Jiansheng, JIANG Linqin, QIU Yu. Performance of Perovskite Solar Cells Based on CuS Hole Transport Materials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(3): 485-492. |
| [6] | LU Hui, WEN Qian, WANG Jiaqi, SHA Simiao, WANG Kang, SUN Weidong, WU Jiandong, MA Jinfu, HOU Chunping, SHENG Zhilin, FENG Weiguang. Research Progress of Perovskite Solar Cells Based on ZnO as Electron Transport Layer [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(2): 208-219. |
| [7] | WANG Chuankun, LU Chengwei, OUYANG Yujie, ZHANG Shengjun, HAO Yanling. Optimization and Numerical Simulation of Sn-Based CH3NH3SnI3 Perovskite Solar Cell [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(11): 2076-2084. |
| [8] | XIAO Jianmin, YUAN Jiren, WANG Peng, DENG Xinhua, HUANG Haibin, ZHOU Lang. Simulation of Lead-Based Halide Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(6): 1051-1058. |
| [9] | REN Jintao, CHEN Qing, HUO Yu, WU Zhixin, YU Chunyan, ZHAI Guangmei. Effect of Acetylsalicylic Acid Passivator on the Performance of Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(6): 1042-1050. |
| [10] | XING Shulin, HE Yunfei, HE Jizhuang, LI Jiahua, FU Chunlin. Current Status of Electron Transport Layer in Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(5): 959-966. |
| [11] | ZHANG Hanhong, YE Shuai, ZHANG Fan. Research Progress on Synthesis of Perovskite Single Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2389-2397. |
| [12] | LI Cheng-hui;ZHENG Hai-song;LIU Jun;XIAO Zhi-ming;ZHAO Yu;WEI Ai-xiang. Preparation Processes and Photovoltaic Performance of Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(7): 1288-1293. |
| [13] | LI Hui;LI Zhan-feng;HAO Yu-ying;CHEN Zhi-liang;ZHANG Qi;ZHENG Xiao-lu. Carbazole-Based Hole Transporting Material and Application in Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(6): 1106-1111. |
| [14] | DONG En-lai;GAO Meng-di;YANG Si-wang;ZHANG Li-na;LYU Hang;ZHANG Wei;MA Jin-wen. Research on Efficiency and Stability of Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(5): 908-914. |
| [15] | ZHAO Shan-zhen;DING Yi;GUO Sheng;SHI Biao;YAO Xin;HOU Fu-hua;ZHENG Cui-cui;ZHANG De-kun;WEI Chang-chun;WANG Guang-cai;ZHAO Ying;ZHANG Xiao-dan. Fabrication of CuSCN Hole Transporting Layer and Its Influences on Perovskite Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(5): 753-758. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS