[1] 郭宝增.GaSb材料特性、制备及应用[J].半导体光电,1999,20(2):73-78. GUO B Z. Properties, preparation and applications of GaSb[J]. Semiconductor Optoelectronics, 1999, 20(2): 73-78(in Chinese). [2] JIANG Z, SUN Y Y, GUO C Y, et al. High quantum efficiency long-/long-wave dual-color type-Ⅱ InAs/GaSb infrared detector[J]. Chinese Physics B, 2019, 28(3): 038504. [3] 谢圣文,杨成奥,黄书山,等.2 μm GaSb基大功率半导体激光器研究进展[J].红外与激光工程,2018,47(5):0503003. XIE S W, YANG C A, HUANG S S, et al. Research progress of 2 μm GaSb-based high power semiconductor laser[J]. Infrared and Laser Engineering, 2018, 47(5): 0503003(in Chinese). [4] ZHENG D N, SU X B, XU Y Q, et al. Research on character of molecular beam epitaxial GaSb thermophotovoltaic (TPV) cells [J]. Infrared and Laser Engineering, 2021, 50(3): 307-314. [5] LIU J F, ZHANG N T, TENG Y, et al. Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode[J]. Chinese Physics B, 2020, 29(11): 117301. [6] YANG Z X, WANG F Y, HAN N, et al. Crystalline GaSb nanowires synthesized on amorphous substrates: from the formation mechanism to p-channel transistor applications[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10946-10952. [7] CHEN Y, LIU J F, ZHAO Y, et al. MOCVD growth of InAs/GaSb type-Ⅱ superlattices on InAs substrates for short wavelength infrared detection[J]. Infrared Physics & Technology, 2020, 105: 103209. [8] ROGALSKI A, MARTYNIUK P, KOPYTKO M. InAs/GaSb type-Ⅱ superlattice infrared detectors: future prospect[J]. Applied Physics Reviews, 2017, 4(3): 031304. [9] ZHANG Z K, PAN W W, LIU J L, et al. A review on MBE-grown HgCdSe infrared materials on GaSb (211)B substrates[J]. Chinese Physics B, 2019, 28(1): 018103. [10] 潘凤春,林雪玲,高 华,等.Cu掺杂ZnO电子结构和光学性质的第一性原理研究[J].山东师范大学学报(自然科学版),2017,32(4):78-85. PAN F C, LIN X L, GAO H, et al. Electronic structure and optical properties of cu doped ZnO: the first-principles calculations[J]. Journal of Shandong Normal University (Natural Science), 2017, 32(4): 78-85(in Chinese). [11] 容天宇,房 丹,谷李彬,等.氮钝化对Te掺杂GaSb材料光学性质的影响[J].光子学报,2018,47(3):0316001. RONG T Y, FANG D, GU L B, et al. Effect of nitrogen passivation on optical properties of Te-doped GaSb[J]. Acta Photonica Sinica, 2018, 47(3): 0316001(in Chinese). [12] 刘 雪.GaSb薄膜掺杂及异质结的光学性质研究[D].长春:长春理工大学,2017:26-46. LIU X. Optical properties of doped GaSb films and GaSb heterojunction[D]. Changchun: Changchun University of Science and Technology, 2017: 26-46(in Chinese). [13] 王 闯. GaSb掺杂过渡金属(V, Cr, Mn)性质的第一性原理研究[D].秦皇岛:燕山大学,2019:20-34. WANG C. First-principles study of GaSb doped with transition metal(TM=V, Cr, Mn)[D]. Qinhuangdao: Yanshan University, 2019: 20-34(in Chinese). [14] 潘凤春,林雪玲,曹志杰,等.Fe,Co,Ni掺杂GaSb的电子结构和光学性质[J].物理学报,2019,68(18):184202. PAN F C, LIN X L, CAO Z J, et al. Electronic structures and optical properties of Fe, Co, and Ni doped GaSb[J]. Acta Physica Sinica, 2019, 68(18): 184202(in Chinese). [15] 刘宝元,马 蕾,张 雷,等.In-As共掺杂GaSb的第一性原理研究[J].中国粉体技术,2014,20(5):37-41. LIU B Y, MA L, ZHANG L, et al. First-principles Study on In-As Co-doped GaSb[J]. China Powder Science and Technology, 2014, 20(5): 37-41(in Chinese). [16] 高 媛,熊 昆,黄丽萍,等.Ru掺杂LiFePO4电子结构和性能的第一性原理研究[J].化学研究与应用,2019,31(5):880-886. GAO Y, XIONG K, HUANG L P, et al. First-principle study of electronic structure and property of Ru-doped LiFePO4[J]. Chemical Research and Application, 2019, 31(5): 880-886(in Chinese). [17] 郭 胜,郭 杰,刘 斌,等.钌掺杂对氧化锡纳米线的光学和气敏性能的影响[J].材料导报,2018,32(S2):143-146. GUO S, GUO J, LIU B, et al. Influence of Ru doping on the optical and gas sensitivity properties of SnO2 nanowires[J]. Materials Review, 2018, 32(S2): 143-146(in Chinese). [18] 刘雪华,邓芬勇,翁卫祥,等.Ru掺杂Sn基氧化物电极的第一性原理计算[J].中国有色金属学报,2014,24(5):1333-1338. LIU X H, DENG F Y, WENG W X, et al. First-principles calculation of Ru-doping Sn-based oxide electrode[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(5): 1333-1338(in Chinese). [19] 胡春霞,吴佑实,魏慧英.掺杂效应对氧化锡纳米晶微结构与性能的影响[J].材料工程,2004,32(7):23-26+31. HU C X, WU Y S, WEI H Y. Study on the effects of Rh doping on microstructure and properties of tin dioxide nanocrystallines[J]. Journal of Materials Engineering, 2004, 32(7): 23-26+31(in Chinese). [20] 高兆芬,李 辉,徐甲强,等.Pd掺杂SnO2气敏薄膜XPS分析及其气敏性能研究[J].电子元件与材料,2011,30(5):26-30. GAO Z F, LI H, XU J Q, et al. XPS analysis and gas sensing properties of Pd doped SnO2 films[J]. Electronic Components and Materials, 2011, 30(5): 26-30(in Chinese). [21] 毕道广,罗 兵,张福增,等.Pd掺杂SnO2厚膜CO2气体传感器的制备及其气敏特性研究[J].电子元件与材料,2021,40(1):11-18. BI D G, LUO B, ZHANG F Z, et al. Preparation and characterization of Pd-filled SnO2 thick film CO2 sensor[J]. Electronic Components and Materials, 2021, 40(1): 11-18(in Chinese). [22] 吕 怡,凌云汉,马 洁,等.Pd掺杂TiO2纳米管阵列的制备及氢敏性能[J].无机化学学报,2010,26(4):627-632. LYU Y, LING Y H, MA J, et al. Pd doped TiO2 nanotube arrays: preparation and hydrogen-sensing performance[J]. Chinese Journal of Inorganic Chemistry, 2010, 26(4): 627-632(in Chinese). [23] 陈紫伟,林志东,李 娜,等.铑掺杂多孔纳米氧化锌的制备及其气敏性能[J].武汉理工大学学报,2015,37(10):22-26. CHEN Z W, LIN Z D, LI N, et al. Preparation and gas sensing properties of Rh-doped porous ZnO[J]. Journal of Wuhan University of Technology, 2015, 37(10): 22-26(in Chinese). [24] 何茂山,朱胜利,崔振铎,等.原位Pd掺杂纳米TiO2材料的合成及光催化性能研究[J].材料保护,2013,46(S2):17-19. HE M S, ZHU S L, CUI Z D, et al. Synthesis and photocatalytic properties of in situ Pd doped TiO2 nanomaterial[J]. Materials Protection, 2013, 46(S2): 17-19(in Chinese). [25] 严非男,杨晨星,陈 俊.掺杂Rh离子SrTiO3晶体缺陷形成能和电子结构的研究[J].人工晶体学报,2016,45(1):279-284. YAN F N, YANG C X, CHEN J. Studies on the formation energies and electronic structures of Rh doped SrTiO3[J]. Journal of Synthetic Crystals, 2016, 45(1): 279-284(in Chinese). [26] 刘 波.掺杂TiO2光催化剂的制备及其光催化性能研究[D].景德镇:景德镇陶瓷学院,2015:56-57. LIU B. Study on preparation and photocatalytic activity of doped TiO2[D]. Jingdezhen: Jingdezhen Ceramic College, 2015: 56-57(in Chinese). [27] 邱 波.过渡金属元素掺杂对钛酸锶电子结构和光学性质的影响[D].长沙:湖南大学,2014:20-34. QIU B. Transition metal doping effect on strontium titanate electronic structure and optical properties[D]. Changsha: Hunan University, 2014: 20-34 (in Chinese). [28] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, Condensed Matter, 1992, 45(23): 13244-13249. [29] PACK J D, MONKHORST H J. “Special points for Brillouin-zone integrations”—a reply[J]. Physical Review B, 1977, 16(4): 1748-1749. [30] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. [31] ORHAN O K, O′REGAN D D. First-principles Hubbard U and Hund's J corrected approximate density functional theory predicts an accurate fundamental gap in rutile and anatase TiO2[J]. Physical Review B, 2020, 101(24): 245137. [32] VAN DE WALLE C G, NEUGEBAUER J. First-principles calculations for defects and impurities: applications to Ⅲ-nitrides[J]. Journal of Applied Physics, 2004, 95(8): 3851-3879. [33] 黄 昆.固体物理学[M].北京: 高等教育出版社,1988:437-452. HUANG K. Solid state physics[M]. Beijing: Higher Education Press, 1988: 437-452(in Chinese). |