JOURNAL OF SYNTHETIC CRYSTALS ›› 2021, Vol. 50 ›› Issue (12): 2362-2378.
• Reviews • Previous Articles Next Articles
GU Peng, WANG Penggang, GUAN Weiming, ZHENG Li, TAN Yunqiang
Received:
2021-08-12
Online:
2021-12-15
Published:
2022-01-06
CLC Number:
GU Peng, WANG Penggang, GUAN Weiming, ZHENG Li, TAN Yunqiang. Research Progress on Growth Techniques of Single Crystal Fiber[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(12): 2362-2378.
[1] 徐晓东.单晶光纤:高功率激光的优选材料[J].人工晶体学报,2020,49(10):1952. XU X D. Single crystal fiber-preferred material for high power laser [J]. Journal of Synthetic Crystals, 2020, 49(10): 1952(in Chinese). [2] FEIGELSON R S. Growth of shaped crystals[M]//Crystal Growth in Science and Technology. Boston, MA: Springer US, 1989: 275-302. [3] RUDOLPH P, FUKUDA T. Fiber crystal growth from the melt[J]. Crystal Research and Technology, 1999, 34(1): 3-40. [4] LABELLE H E, MLAVSKY A I. Growth of sapphire filaments from the melt[J]. Nature, 1967, 216(5115): 574-575. [5] BURRUS C A, STONE J. Single bcrystal fiber optical devices: a Nd∶YAG fiber laser[J]. Applied Physics Letters, 1975, 26(6): 318-320. [6] DUBINSKII M, ZHANG J, FROMZEL V, et al. Low-loss ‘crystalline-core/crystalline-clad’ (C4) fibers for highly power scalable high efficiency fiber lasers[J]. Optics Express, 2018, 26(4): 5092. [7] SHAW L B, BAYYA S, KIM W, et al. Fabrication of cladded single crystal fibers for all-crystalline fiber lasers[C]//Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF). Zurich. Washington, D.C.: OSA, 2018: SoW2H.3. [8] YOSHIKAWA A, CHANI V. Growth of optical crystals by the micro-pulling-down method[J]. MRS Bulletin, 2009, 34(4): 266-270. [9] JOACHIM R, HERMANN R. Pulling nozzle for oriented pulling of semiconductor crystals from a melt: US3393054A[P]. 1968-7-16. [10] SAMANTA G, YECKEL A, BOURRET-COURCHESNE E D, et al. Parametric sensitivity and temporal dynamics of sapphire crystal growth via the micro-pulling-down method[J]. Journal of Crystal Growth, 2012, 359: 99-106. [11] XU X, LEBBOU K, MORETTI F, et al. Ce-doped LuAG single-crystal fibers grown from the melt for high-energy physics[J]. Acta Materialia, 2014, 67: 232-238. [12] FUKUDA T, CHANI V I. Shaped crystals[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. [13] XU J, SONG Q S, LIU J, et al. The micro-pulling-down growth of Eu3+-doped Y3Al5O12 and Y3ScAl4O12 crystals for red luminescence[J]. Optical Materials, 2020, 109: 110388. [14] PAN Y X, LIN H, LIU J, et al. Spectroscopic properties of Yb3+, Ho3+-doped Y3Al5O12 single crystals grown by the micro-pulling-down method[J]. Infrared Physics & Technology, 2020, 111: 103540. [15] ZENG Z, QIAO L, LIU Y P, et al. Numerical study on the radial dopant distribution in micro-pulling-down crystal growth[J]. Journal of Crystal Growth, 2016, 434: 110-115. [16] WANG Y, LIAN Y S, ZHANG Y P, et al. A series of Er3+-activated SrLaGa3O7 single crystal fibers for mid-infrared laser application[J]. Journal of Rare Earths, 2020, 38(5): 523-530. [17] BOUAITA R, ALOMBERT-GOGET G, GHEZAL E A, et al. Seed orientation and pulling rate effects on bubbles and strain distribution on a sapphire crystal grown by the micro-pulling down method[J]. CrystEngComm, 2019, 21(28): 4200-4211. [18] YOSHIKAWA A, NIKL M, BOULON G, et al. Challenge and study for developing of novel single crystalline optical materials using micro-pulling-down method[J]. Optical Materials, 2007, 30(1): 6-10. [19] SIDLETSKIY O, LEBBOU K, KOFANOV D. Micro-pulling-down growth of long YAG- and LuAG-based garnet fibres: advances and bottlenecks[J]. CrystEngComm, 2021, 23(14): 2633-2643. [20] MURAKAMI R, OIKAWA K, KAMADA K, et al. Investigation of crystal shape controllability in the micro-pulling-down method for low-wettability systems[J]. ACS Omega, 2021, 6(12): 8131-8141. [21] KURLOV V N, EPELBAUM B M. EFG growth of sapphire tubes up to 85 mm in diameter[J]. Journal of Crystal Growth, 1998, 187(1): 107-110. [22] FEJER M M, NIGHTINGALE J L, MAGEL G A, et al. Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers[J]. Review of Scientific Instruments, 1984, 55(11): 1791-1796. [23] 宋晓佳,何 晔,屈菁菁,等.微下拉法晶体生长炉自动控制系统的研究[J].压电与声光,2019,41(2):241-243. SONG X J, HE Y, QU J J, et al. Study on the auto-control system of micro-pulling-down furnace for single crystal growth[J]. Piezoelectrics & Acoustooptics, 2019, 41(2): 241-243(in Chinese). [24] RUDOLPH P, YOSHIKAWA A, FUKUDA T. Studies on meniscus and diameter stability during the growth of fiber crystals by the micro-pulling-down method[J]. Japanese Journal of Applied Physics, 2000, 39(Part 1, No. 10): 5966-5969. [25] 王亚琦,张连翰,杭 寅,等.自动控制的微下拉晶体生长装置和自动控制方法: CN105839176A[P].2016-08-10. WANG Y Q, ZHANG L H, HANG Y, et al. Automatic controlled micro pull-down crystal growth device and automatic control method: CN105839176A[P].2016-08-10(in Chinese). [26] KAMADA K, YANAGIDA T, PEJCHAL J, et al. Scintillation properties of Ce doped Gd2Lu1(Ga, Al)5O12 single crystal grown by the micro-pulling-down method[J]. Journal of Crystal Growth, 2012, 352(1): 35. [27] KAN S, SAKAMOTO M, OKANO Y, et al. Photorefraction dependent on composition in LiNbO3 crystals with and without MgO doping[J]. Crystal Research and Technology, 1996, 31(3): 353-357. [28] KAMADA K, PEJCHAL J, NIKL M, et al. Growth of Sc doped RE3Al5O12 (RE = Y, Lu) single crystals by micro-pulling-down method and their scintillation properties[J]. Optical Materials, 2014, 36(12): 1934-1937. [29] SUGIYAMA M, YOKOTA Y, FUJIMOTO Y, et al. Dopant segregation in rare earth doped lutetium aluminum garnet single crystals grown by the micro-pulling down method[J]. Journal of Crystal Growth, 2012, 352(1): 110-114. [30] NOVOSELOV A, MUN J H, YOSHIKAWA A, et al. Growth of Yb∶Y2O3 single crystals by the micro-pulling-down method[J]. MRS Online Proceedings Library, 2004, 848(1): 288-293. [31] MAIER D, RHEDE D, BERTRAM R, et al. Dopant segregations in oxide single-crystal fibers grown by the micro-pulling-down method[J]. Optical Materials, 2007, 30(1): 11-14. [32] SIMURA R, YOSHIKAWA A, UDA S. The radial distribution of dopant (Cr, Nd, Yb, or Ce) in yttrium aluminum garnet (Y3Al5O12) single crystals grown by the micro-pulling-down method[J]. Journal of Crystal Growth, 2009, 311(23/24): 4763-4769. [33] 刘亚平.微下拉法晶体生长数值模拟[D].重庆:重庆大学,2014. LIU Y P. Numerical simulation of micro-pulling-down crystal growth[D]. Chongqing: Chongqing University, 2014(in Chinese). [34] SU W J, DUFFAR T, NEHARI A, et al. Modeling of dopant segregation in sapphire single crystal fibre growth by Micro-Pulling-Down method[J]. Journal of Crystal Growth, 2017, 474: 43-49. [35] NICOARA I, BUNOIU O M, VIZMAN D. Voids engulfment in shaped sapphire crystals[J]. Journal of Crystal Growth, 2006, 287(2): 291-295. [36] GHEZAL E A, LI H, NEHARI A, et al. Effect of pulling rate on bubbles distribution in sapphire crystals grown by the micropulling down (μ-PD) technique[J]. Crystal Growth & Design, 2012, 12(8): 4098-4103. [37] GUZIK M, PEJCHAL J, YOSHIKAWA A, et al. Structural investigations of Lu2O3 as single crystal and polycrystalline transparent ceramic[J]. Crystal Growth & Design, 2014, 14(7): 3327-3334. [38] FEIGELSON R S. The laser-heated pedestal growth method: a powerful tool in the search for new high performance laser crystals[C]//Tunable Solid State Lasers, 1985. DOI:10.1007/978-3-540-39236-1_19. [39] WANG T, ZHANG J, ZHANG N, et al. Single crystal fibers: diversified functional crystal material[J]. Advanced Fiber Materials, 2019, 1(3/4): 163-187. [40] ANDREETA M R B, HERNANDES A C. Laser-heated pedestal growth of oxide fibers[M]//Springer Handbook of Crystal Growth. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 393-432. [41] 危子彪,霍玉晶,何淑芳.微机控制的晶体光纤生长设备[J].人工晶体学报,1996,25(3): 268-271. WEI Z B, HUO Y J, HE S F. Microcomputer controlled single crystal fiber growth apparatus[J]. Journal of Synthetic Crystals, 1996, 25(3): 268-271 (in Chinese). [42] 沈永行,王彦起,叶林华,等.用LHPG法生长晶体光纤的环形聚焦激光加热系统研究[J].高技术通讯,1994,4(7): 16-18. SHEN Y H, WANG Y Q, YE L H, et al. Study on the laser-heated miniature pedestal growth system with circular laser focusing[J]. High Technology Letters, 1994, 4(7): 16-18 (in Chinese). [43] 沈剑威,王 迅,沈永行.LHPG法生长单晶光纤中熔区生长界面对消除气泡的影响[J].人工晶体学报,2008,37(1):60-64. SHEN J W, WANG X, SHEN Y H. Effects of growing interface on elimination of bubbles in single-crystal fibers by using the LHPG method[J]. Journal of Synthetic Crystals, 2008, 37(1): 60-64(in Chinese). [44] ANDREETA M R B, ANDREETA E R M, HERNANDES A C. Laser-heated pedestal growth of colorless LaAlO3 single crystal fiber[J]. Journal of Crystal Growth, 2005, 275(1/2): e757-e761. [45] 卢子宏,陈继勤,陈溪芳,等.单晶光纤生长中的直径波动[J].硅酸盐学报,1990,18(3):262-267. LU Z H, CHEN J Q, CHEN X F, et al. The diameter fluctuation in the growth of single crystal fibers[J]. Journal of the Chinese Ceramic Society, 1990, 18(3): 262-267(in Chinese). [46] FEJER M M, MAGEL G A, BYER R L. High-speed high-resolution fiber diameter variation measurement system[J]. Applied Optics, 1985, 24(15): 2362. [47] ANDREETA M R B, CARASCHI L C, HERNANDES A C. Automatic diameter control system applied to the laser heated pedestal growth technique[J]. Materials Research, 2003, 6(1): 107-110. [48] KATYBA G M, ZAYTSEV K I, DOLGANOVA I N, et al. Sapphire waveguides and fibers for terahertz applications[J]. Progress in Crystal Growth and Characterization of Materials, 2021, 67(3): 100523. [49] PRYSHLAK A P, DUGAN J R, FITZGIBBON J J. Advancements in sapphire optical fibers for the delivery of erbium laser energy and IR sensor applications[C]//Photonics West '96. Proc SPIE 2677, Biomedical Fiber Optics, San Jose, CA, USA. 1996, 2677: 35-42. [50] KATYBA G M, ZAYTSEV K I, DOLGANOVA I N, et al. Sapphire shaped crystals for waveguiding, sensing and exposure applications[J]. Progress in Crystal Growth and Characterization of Materials, 2018, 64(4): 133-151. [51] ABROSIMOVI N V, KURLOV V N, ROSSOLENKO S N. Automated control of Czochralski and shaped crystal growth processes using weighing techniques[J]. Progress in Crystal Growth and Characterization of Materials, 2003, 46(1/2): 1-57. [52] LIU B, OHODNICKI P R. Fabrication and application of single crystal fiber: review and prospective[J]. Advanced Materials Technologies, 2021, 6(9): 2100125. [53] WANG D H, HOU W T, LI N, et al. Defects and optical property of single-crystal sapphire fibers grown by edge-defined film-fed growth method[J]. Journal of Inorganic Materials, 2020, 35(9): 1053. [54] KURLOV V N, STRYUKOV D O, SHIKUNOVA I A. Growth of sapphire and oxide eutectic fibers by the EFG technique[J]. Journal of Physics: Conference Series, 2016, 673: 012017. [55] 李东振,徐 军,王东海,等.一种直径均匀单晶光纤加工方法: CN110257919A[P].2019-09-20. LI D Z, XU J, WANG D H, et al. A processing method of single crystal optical fiber with uniform diameter: CN110257919A[P].2019-09-20(in Chinese). [56] YIN S Z, LUO F. Method and apparatus for producing crystalline cladding and crystalline core optical fibers: US10274673[P]. 2019-04-30. [57] KIM W, BAYYA S, SHAW B, et al. Hydrothermally cladded crystalline fibers for laser applications[J]. Optical Materials Express, 2019, 9(6): 2716. [58] HUANG K Y, HSU K Y, JHENG D Y, et al. Low-loss propagation in Cr4+∶YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique[J]. Optics Express, 2008, 16(16): 12264-12271. [59] LEE H, SIRN B, PARK I S. Recent progress in ceramic YAG cladding technology for fiber laser applications[C]//SPIE Defense, Security, and Sensing. Proc SPIE 8733, Laser Technology for Defense and Security Ⅸ, Baltimore, Maryland, USA. 2013, 8733: 148-159. [60] LAI C C, GAO W T, NGUYEN D H, et al. Toward single-mode active crystal fibers for next-generation high-power fiber devices[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 13928-13936. [61] 王 涛,张 健,张 娜,等.单晶光纤制备及单晶光纤激光器研究进展[J].激光与光电子学进展,2019,56(17):170611. WANG T, ZHANG J, ZHANG N, et al. Research progress in preparation of single crystal fiber and fiber lasers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170611(in Chinese). [62] BERA S, NIE C D, HARRINGTON J A, et al. Cladding single crystal YAG fibers grown by laser heated pedestal growth[C]//SPIE LASE. Proc SPIE 9726, Solid State Lasers XXV: Technology and Devices, San Francisco, California, USA. 2016, 9726: 43-51. [63] LAI C C, LIN Y S, HUANG K Y, et al. Study on the core/cladding interface in Cr∶YAG double-clad crystal fibers grown by the codrawing laser-heated pedestal growth method[J]. Journal of Applied Physics, 2010, 108(5): 054308. [64] 徐 军, 赵广军, 刘军芳,等. 掺钕钇铝石榴石和钇铝石榴石复合激光晶体的制备方法: CN1424437[P]. 2002-12-20. XU J, ZHAO G J, LIU J F, et al. Preparation of Nd∶YAG and Er∶YAG composite laser crystals: CN1424437[P]. 2002-12-20(in Chinese). [65] 孟 宗,陈子君,李玉和,等.石英包层LYSO∶Ce闪烁光纤的电子辐射传感特性[J].中国激光,2020,47(8):168-174. MENG Z, CHEN Z J, LI Y H, et al. Electron radiation sensing characteristics of silica cladding LYSO∶Ce scintillating fiber[J]. Chinese Journal of Lasers, 2020, 47(8): 168-174(in Chinese). [66] DIEHL S, NOVOTNY R W, AUBRY N, et al. Development and characterization of inorganic scintillating fibers made of LuAG∶Ce and LYSO∶Ce[J]. IEEE Transactions on Nuclear Science, 2014, 61(1): 353-361. [67] DIEHL S, NOVOTNY R W, AUBRY N, et al. Characterization and applications of new high quality LuAG∶Ce and LYSO∶Ce fibers[J]. Journal of Physics: Conference Series, 2015, 587: 012067. [68] DIEHL S, NOVOTNY R W, AUBRY N, et al. Characterization and optimization of new high-quality inorganic fibers made of LuAG∶Ce and LYSO: ce[C]//2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). November 8-15, 2014, Seattle, WA, USA. IEEE, 2014: 1-6. [69] DIDIERJEAN J, AUBRY N, PERRODIN D, et al. Oxide crystal-fibers grown by micro-pulling-down technique and applications for lasers and scintillators[C]//SPIE OPTO. Proc SPIE 8263, Oxide-Based Materials and Devices Ⅲ, San Francisco, California, USA. 2012, 8263: 132-144. [70] DÉLEN X, MARTIAL I, DIDIERJEAN J, et al. 34 W continuous wave Nd∶YAG single crystal fiber laser emitting at 946 nm[J]. Applied Physics B, 2011, 104(1): 1-4. [71] SANGLA D, AUBRY N, DIDIERJEAN J, et al. First demonstration of laser emission from an Yb∶YAG single crystal fiber grown by the micro-pulling down technique[C]//2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science. May 4-9, 2008, San Jose, CA, USA. IEEE, 2008: 1-2. [72] DÉLEN X, PIEHLER S, DIDIERJEAN J, et al. 250 W single-crystal fiber Yb∶YAG laser[J]. Optics Letters, 2012, 37(14): 2898-2900. [73] ZAOUTER Y, MARTIAL I, DÉLEN X, et al. 12 W, 350 fs ultrashort pulses from a micro-pulling down Yb∶YAG single crystal fiber amplifier[C]//2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC). May 22-26, 2011, Munich, Germany. IEEE, 2011: 1. [74] MARKOVIC V, ROHRBACHER A, HOFMANN P, et al. 160 W800 fs Yb∶YAG single crystal fiber amplifier without CPA[J]. Optics Express, 2015, 23(20): 25883-25888. [75] MARTIAL I, DIDIERJEAN J, BALEMBOIS F, et al. Er∶YAG single-crystal fiber laser in Q-switched operation[C]//Advances in Optical Materials. Istanbul. Washington, D.C.: OSA, 2011. [76] ZANDI B, GRUBER J B, SARDAR D K, et al. Modeling of Er in ceramic YAG and comparison with single-crystal YAG[C]//Defense and Security. Proc SPIE 5792, Laser Source and System Technology for Defense and Security, Orlando, Florida, USA. 2005, 5792: 26-33. [77] MARTIAL I, BIGOTTA S, EICHHORN M, et al. Er∶YAG fiber-shaped laser crystals (single crystal fibers) grown by micro-pulling down: characterization and laser operation[J]. Optical Materials, 2010, 32(9): 1251-1255. [78] LI Y, JOHNSON E G, NIE C D, et al. Ho∶YAG single crystal fiber: fabrication and optical characterization[J]. Optics Express, 2014, 22(12): 14896. [79] WANG J, SONG Q, SUN Y, et al. High-performance Ho∶YAG single-crystal fiber laser in-band pumped by a Tm-doped all-fiber laser[J]. Optics Letters, 2019, 44(2): 455-458. [80] ZHAO Y G, WANG L, CHEN W D, et al. 35 W continuous-wave Ho∶YAG single-crystal fiber laser[J]. High Power Laser Science and Engineering, 2020, 8: e25. DOI:10.1017/hpl.2020.25. [81] NIHEI T, YOKOTA Y, ARAKAWA M, et al. Growth of platinum fibers using the micro-pulling-down method[J]. Journal of Crystal Growth, 2017, 468: 403-406. [82] MURAKAMI R, KAMADA K, SHOJI Y, et al. Fabrication of flexible Ir and Ir-Rh wires and application for thermocouple[J]. Journal of Crystal Growth, 2018, 487: 72-77. [83] 钟鹤裕,侯印春,权宁三,等.铌酸锂单晶光纤的生长[J].硅酸盐学报,1991,19(6):527-531. ZHONG H Y, HOU Y C, QUAN N S, et al. Growth of lithium niobate single crystal fiber[J]. Journal of the Chinese Ceramic Society, 1991, 19(6): 527-531(in Chinese). [84] 霍玉晶,张红武,赵书清,等.LiB3O5单晶光纤生长[J].人工晶体学报,1989,18(4):259-261. HUO Y J, ZHANG H W, ZHAO S Q, et al. Growth of LBO single crystal fibers[J]. Journal of Synthetic Crystals, 1989, 18(4): 259-261(in Chinese). |
[1] | WANG Tao, JIA Zhitai, LI Yang, ZHANG Jian, TAO Xutang. Single-Crystal Fiber Growth and Single-Crystal Fiber High-Temperature Sensors: Review and Perspective [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(9): 1603-1624. |
[2] | XU Jie, SONG Qingsong, LIU Jian, DING Yuchong, LI Dongzhen, XU Xiaodong, XU Jun. Growth and Spectral Properties of Sm3+-Doped YAG and Y3ScAl4O12 Single Crystal Fibers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(7): 1391-1396. |
[3] | WANG Xinyue, ZHANG Shengnan, HUO Xiaoqing, ZHOU Jinjie, WANG Jian, CHENG Hongjuan. Research Progress of Ultra-Wide Bandgap Semiconductor β-Ga2O3 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(11): 1995-2012. |
[4] | MA Yunfeng, XU Jiayue, JIANG Yijian, BOURRET-COURCHESNE Edith. Scintillation Crystal Mg4Ta2O9 and Its Doping Modification for Container Security Applications [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(10): 1870-1878. |
[5] | ZOU Zhenggang, LIU Zhen, GONG Guoliang, SUN Yijian, WEN Herui, ZHONG Jiuping. Microstructure and Luminescence Properties of Ce3+ Doped GdLu2Al5O12/Al2O3 Eutectic [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(10): 1963-1970. |
[6] | LIU Fang, LIU Zhen, ZHONG Xingyuan, ZHONG Jiuping. Growth and Microstructure of Ordered Eutectics GdAlO3:Tb3+-Al2O3 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(10): 1971-1978. |
[7] | YU Lu;YE Lin-hua;BAO Ren-jie;ZHANG Xian-wei;WANG Li-Gang. Growth and Fluorescence Temperature Characteristics of Cr3+Doped MgAl2 O4 Single Crystal Optical Fiber [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(9): 1672-1677. |
[8] | CHEN Sai;XU Jia-yue;LU Bao-liang. Development and Application of Micro-pulling-down Furnace for Growth of BGSO Fiber Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2015, 44(12): 3755-3758. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||