[1] LUO M, LIN C S, LIN D H, et al.Rational design of the metal-free KBe2BO3F2·(KBBF) family member C(NH2)3SO3F with ultraviolet optical nonlinearity[J]. Angewandte Chemie, 2020, 132(37): 16112-16115. [2] MUTAILIPU M, PAN S L.Emergent deep-ultraviolet nonlinear optical candidates[J]. Angewandte Chemie International Edition, 2020, 59(46): 20302-20317. [3] ZHANG B B, SHI G Q, YANG Z H, et al.Fluorooxoborates: beryllium-free deep-ultraviolet nonlinear optical materials without layered growth[J]. Angewandte Chemie International Edition, 2017, 56(14): 3916-3919. [4] GUO S, KANG L, LIU L J, et al.Deep-ultraviolet nonlinear optical crystal NaBe2BO3F2-structure, growth and optical properties[J]. Journal of Crystal Growth, 2019, 518: 45-50. [5] LI Z H, WU Y C, FU P Z, et al.Crystal growth of Na5B2P3O13[J]. Chemistry Letters, 2002, 31(6): 560-561. [6] HU Z G, YOSHIMURA M, MURAMATSU K, et al.A new nonlinear optical crystal-BaAlBO3F2(BABF)[J]. Japanese Journal of Applied Physics, 2002, 41(Part 2, No. 10B): L1131-L1133. [7] LAUDISE R A, CAVA R J, CAPORASO A J.Phase relations, solubility and growth of potassium titanyl phosphate, KTP[J]. Journal of Crystal Growth, 1986, 74(2): 275-280. [8] GUO S, JIANG X X, LIU L J, et al.BaBe2BO3F3: a KBBF-type deep-ultraviolet nonlinear optical material with reinforced [Be2BO3F2]∞ layers and short phase-matching wavelength[J]. Chemistry of Materials, 2016, 28(24): 8871-8875. [9] ZHAO S G, GONG P F, LUO S Y, et al.Beryllium-free Rb3Al3B3O10F with reinforced interlayer bonding as a deep-ultraviolet nonlinear optical crystal[J]. Journal of the American Chemical Society, 2015, 137(6): 2207-2210. [10] HUANG H W, CHEN C T, WANG X Y, et al.Ultraviolet nonlinear optical crystal: CsBe2Bo3F2[J]. Journal of the Optical Society of America B, 2011, 28(9): 2186. [11] LIEBERTZ J, STÄHR S. Zur tieftemperaturphase von BaB2O4[J]. Zeitschrift Für Kristallographie, 1983, 165(1/2/3/4): 91-93. [12] CHEN C T, WU B C, JIANG A D, et al.A new-type ultraviolet shg CRYSTAL-β-BaB2O4[J]. Science in China,Ser B, 1985, 28(3): 235-243. [13] LI J, MA Z J, HE C, et al.An effective strategy to achieve deeper coherent light for LiB3O5[J]. Journal of Materials Chemistry C, 2016, 4: 1926-1934. [14] ZHAO S Q, HUANG C E, ZHANG H W.Crystal growth and properties of lithium triborate[J]. Journal of Crystal Growth, 1990, 99(1/2/3/4): 805-810. [15] MARKGRAF S A, FURUKAWA Y, SATO M.Top-seeded solution growth of LiB3O5[J]. Journal of Crystal Growth, 1994, 140(3/4): 343-348. [16] WANG X L, LIU L J, XU B, et al.Deep-UV absorption study of nonlinear optical crystal KBe2BO3F2[J]. Optical Materials, 2014, 36(12): 1991-1994. [17] KANG LEI, LIN Z S, LIU F, et al.Removal of a-site alkaline earth metal cations in KBe2BO3F2-type layered structures to enhance the deep-ultraviolet nonlinear optical capacity[J]. Inorganic Chemisity, 2018, 57: 11146-11156. [18] ZHAO S, GONG P, BAI L, et al.Beryllium-free Li4Sr(BO3)2 for deep-ultraviolet nonlinear optical applications[J]. Nature Communications, 2014, 5: 4019. [19] SHI G Q, WANG Y, ZHANG F F, et al.Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F[J]. Journal of the American Chemical Society, 2017, 139(31): 10645-10648. [20] ZHANG B B, SHI G Q, YANG Z H, et al.Fluorooxoborates: beryllium-free deep-ultraviolet nonlinear optical materials without layered growth[J]. Angewandte Chemie International Edition, 2017, 56(14): 3916-3919. [21] WANG Y, ZHANG B B, PAN S L, et al.Cation-tuned synthesis of fluorooxoborates: approaching the optimal deep-ultraviolet nonlinear optical materials[J]. Angewandte Chemie International Edition, 2018, 130: 2172-2176. [22] MUTAILIPU M, ZHANG M, ZHANG B B, et al.SrB5O7F3: the first asymmetric alkaline-earth fluorooxoborate with unprecedented [B5O9F3]6- functionalized chromophore[J]. Angewandte Chemie International Edition, 2018, 57: 6095. [23] LUO M, FEI L, SONG Y X, et al.Correction to “M2B10O14F6 (M=Ca,Sr): two noncentrosymmetric alkaline earth fluorooxoborates as promising next-generation deep-ultraviolet nonlinear optical materials”[J]. Journal of the American Chemical Society, 2018, 140(20): 6509. [24] CHEN C T, LIU G Z.Recent advances in nonlinear optical and electro-optical materials[J]. Annual Review of Materials Science, 1986, 16(1): 203-243. [25] CHEN C T, YE N, LIN J, et al.Computer-assisted design for nonlinear optical crystals[C]//Proc SPIE 3556, Electro-Optic and Second Harmonic Generation Materials, Devices, and Applications II, 1998, 3556: 14-20. [26] CASTEP3.5 Program developed by Molecular Simulation Inc. [CP]. (1997). [27] KOHN W, SHAM L J.Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): a1133. [28] PERDEW J P, WANG Y.Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, Condensed Matter, 1992, 45(23): 13244-13249. [29] LIN J, LEE M H, LIU Z P, et al.Mechanism for linear and nonlinear optical effects in β-BaB2O4crystals[J]. Physical Review B, 1999, 60(19): 13380. [30] LIN Z S, WANG Z Z, CHEN C T, et al.Mechanism for linear and nonlinear optical effects in KBe2BO3F2 (KBBF) crystal[J]. Chemical Physics Letters, 2003, 367(5/6): 523-527. [31] LI L, WANG Y, LEI B H, et al.LiRb2PO4: a new deep-ultraviolet nonlinear optical phosphate with a large SHG response[J]. Journal of Materials Chemistry C, 2017, 5(2): 269-274. [32] KALIM SHAIKH, LAD A B AND PAWAR B H. Growth and properties of ADP single crystal[J]. Advances in Applied Science Research, 2015, 6(4): 61-64. [33] KAWAHARA A, MORITANI H, YAMAKAWA J.Crystal structure of synthetic zinc monophosphate Zn2(OH)PO4: a polymorph of tarbuttite[J]. Mineralogical Journal, 1994, 17(3): 132-139. [34] CLARK S J, SEGALL M D, PICKARD C J, et al.First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567-570. DOI:10.1524/zkri.220.5.567.65075. [35] LIN J S, QTEISH A, PAYNE M C, et al.Optimized and transferable nonlocal separableab initiopseudopotentials[J]. Physical Review B, 1993, 47(8): 4174. [36] MONKHORST H J, PACK J D.Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188. [37] GODBY R W, SCHLÜTER M, SHAM L J. Self-energy operators and exchange-correlation potentials in semiconductors[J]. Physical Review B, Condensed Matter, 1988, 37(17): 10159-10175. [38] WANG C S, KLEIN B M.First-principles electronic structure of Si, Ge, GaP, GaAs, ZnS, and ZnSe. II. Optical properties[J]. Physical Review B, 1981, 24(6): 3417. [39] LEE M H, YANG C H, JAN J H.Band-resolved analysis of nonlinear optical properties of crystalline and molecular materials[J]. Physical Review B, 2004, 70(23): 235110. [40] CHEN C T, LI R K, WU Y C, et al.Nonlinear optical borate crystals, principles and applications[J]. Discrete Mathematics, 2012, 26(2): 43-50. [41] KURTZ S K, PERRY T T.A powder technique for the evaluation of nonlinear optical materials[J]. Journal of Applied Physics, 1968, 39(8): 3798-3813. |