[1] ZHANG S J, LI F, YU F P, et al. Recent developments in piezoelectric crystals[J]. Journal of the Korean Ceramic Society, 2018, 55(5): 419-439. [2] ZHANG S J, FEI Y T, CHAI B H T, et al. Characterization of piezoelectric single crystal YCa4O(BO3)3 for high temperature applications[J]. Applied Physics Letters, 2008, 92(20): 202905. [3] SHIMIZU H, NISHIDA T, TAKEDA H, et al. Dielectric, elastic and piezoelectric properties of RCa4O(BO3)3 (R=rare-earth elements) crystals with monoclinic structure of point group M[J]. Journal of Crystal Growth, 2009, 311(3): 916-920. [4] ZHANG S J, YU F P. Piezoelectric materials for high temperature sensors[J]. Journal of the American Ceramic Society, 2011, 94(10): 3153-3170. [5] ZHANG S J, FRANTZ E, XIA R, et al. Gadolinium calcium oxyborate piezoelectric single crystals for ultrahigh temperature (>1 000 ℃) applications[J]. Journal of Applied Physics, 2008, 104(8): 084103. [6] BOHM J, CHILLA E, FLANNERY C, et al. Czochralski growth and characterization of piezoelectric single crystals with langasite structure: La3Ga5SiO14 (LGS), La3Ga5.5Nb0.5O14 (LGN) and La3Ga5.5Ta0.5O14 (LGT) Ⅱ. Piezoelectric and elastic properties[J]. Journal of Crystal Growth, 2000, 216(1/2/3/4): 293-298. [7] JIANG C, LONG Y, YU F P, et al. Single crystal growth and temperature dependent behaviors of melilite type piezoelectric crystal Ca2Al2SiO7[J]. Journal of Crystal Growth, 2018, 496/497: 57-63. [8] YU F P, HOU S, ZHANG S J, et al. Electro-elastic properties of YCa4O(BO3)3 piezoelectric crystals[J]. Physica Status Solidi (a), 2014, 211(3): 574-579. [9] TIAN S W, LI L L, LU X Y, et al. Electrical conduction mechanism of rare-earth calcium oxyborate high temperature piezoelectric crystals[J]. Acta Materialia, 2020, 183: 165-171. [10] YANG B Z, YANG Z P, LIU Y F, et al. Synthesis and photoluminescence properties of the high-brightness Eu3+-doped Sr3Y(PO4)3 red phosphors[J]. Ceramics International, 2012, 38(6): 4895-4900. [11] WANG J Y, WANG J B, DUAN P. Luminescent properties of Dy3+ doped Sr3Y(PO4)3 for white LEDs[J]. Materials Letters, 2013, 107: 96-98. [12] HUANG B Y, FENG B L, LUO L, et al. Warm white light generation from single phase Sr3Y(PO4)3:Dy3+, Eu3+ phosphors with near ultraviolet excitation[J]. Materials Science and Engineering: B, 2016, 212: 71-77. [13] CHEN X, GONG Z L, WAN Q P, et al. Ba3Tb(PO4)3: crystal growth, structure, magnetic and magneto-optical properties[J]. Optical Materials, 2015, 44: 48-53. [14] ZNAMIEROWSKA T, SZUSZKIEWICZ W, HANUZA J, et al. Ternary orthophosphates of the Ba3Y1-xNdx(PO4)3 family as possible powder laser materials[J]. Journal of Alloys and Compounds, 2002, 341(1/2): 371-375. [15] WU G D, KONG L K, FAN M D, et al. Electro-elastic features of YBa3(PO4)3 and YbBa3(PO4)3 crystals with pure face-shear mode for acoustic wave sensor applications[J]. Journal of Materiomics, 2020. [16] WU G D, FAN M D, YU F P, et al. Growth, thermal, and spectroscopic properties of YbBa3(PO4)3 single crystal: a new stoichiometric lasing material[J]. Crystal Growth & Design, 2020, 20(12): 7963-7971. [17] GUO N, HUANG Y, JIA Y, et al. A novel orange-yellow-emitting Ba3Lu(PO4)3:Eu2+, Mn2+phosphor with energy transfer for UV-excited white LEDs[J]. Dalton Transactions (Cambridge, England), 2013, 42(4): 941-947. [18] MEYER K. Characterization of the structure of binary zinc ultraphosphate glasses by infrared and Raman spectroscopy[J]. Journal of Non-Crystalline Solids, 1997, 209(3): 227-239. [19] FOMIN V I, GNEZDILOV V P, KURNOSOV V S, et al. Raman scattering in a LiNiPO4 single crystal[J]. Low Temperature Physics, 2002, 28(3): 203-209. [20] BURBA C M, FRECH R. Vibrational spectroscopic study of lithium intercalation into LiTi2(PO4)3[J]. Solid State Ionics, 2006, 177(17/18): 1489-1494. [21] MESFAR M, ABDELHEDI M, DAMMAK M, et al. Synthesis, crystal structure and vibrational spectra characterization of CeP5O14[J]. Journal of Molecular Structure, 2012, 1028: 196-199. [22] MIAO H C, LI F X. Shear horizontal wave transducers for structural health monitoring and nondestructive testing: a review[J]. Ultrasonics, 2021, 114: 106355. |