[1] 段伟锋.硅单晶等径阶段直径模型辨识与控制研究[D].西安:西安理工大学,2017. DUAN W F. Model identification and control of silicon single crystal diameter for constant-diameter growth stage[D]. Xi'an: Xi'an University of Technology, 2017(in Chinese). [2] GEVELBER M A, WARGO M J, STEPHANOPOULOS G. Advanced control design considerations for the Czochralski process[J]. Journal of Crystal Growth, 1987, 85(1/2): 256-263. [3] BARDSLEY W, HURLE D T J, JOYCE G C. The weighing method of automatic Czochralski crystal growth: i. Basic theory[J]. Journal of Crystal Growth, 1977, 40(1): 13-20. [4] 刘 秀.基于双重预测PI的单晶硅直径控制系统[D].上海:东华大学,2016. LIU X. Silicon single crystal diameter control systembased on dual predictive PI[D]. Shanghai: Donghua University, 2016(in Chinese). [5] 王 展.恒拉速工艺下硅单晶直径控制方法研究[D].西安:西安理工大学,2020. WANG Z, Research on diameter control method of silicon single crystal under constant pulling velocity process[J]. Xi'an: Xi'an University of Technology, 2020(in Chinese). [6] ZHENG Z C, SETO T, KIM S, et al. A first-principle model of 300 mm Czochralski single-crystal Si production process for predicting crystal radius and crystal growth rate[J]. Journal of Crystal Growth, 2018, 492: 105-113. [7] 王海龙.模型预测控制在复杂工业过程中的应用研究[D].兰州:兰州大学,2013. WANG H L. Application studies on model predictive control of complex industrial process[D]. Lanzhou: Lanzhou University, 2013(in Chinese). [8] 梁炎明,刘 丁,伍光宇.基于自适应重叠系数的T-S模型在线辨识算法及应用[J].控制与决策,2012,27(9):1425-1428+1432. LIANG Y M, LIU D, WU G Y. Online T-S model identification algorithm based on adaptive overlap coefficient and its application[J]. Control and Decision, 2012, 27(9): 1425-1428+1432(in Chinese). [9] RAHMANPOUR P, SÆLID S, HOVD M, et al. Nonlinear model predictive control of the czochralski process[J]. IFAC-PapersOnLine, 2016, 49(20): 120-125. [10] RAHMANPOUR P, SÆLID S, HOVD M. Run-To-Run control of the Czochralski process[J]. Computers & Chemical Engineering, 2017, 104: 353-365. [11] WINKLER J, NEUBERT M, RUDOLPH J. Nonlinear model-based control of the Czochralski process I: motivation, modeling and feedback controller design[J]. Journal of Crystal Growth, 2010, 312(7): 1005-1018. [12] 张 诚.基于模型预测控制的硅单晶体提拉效果仿真研究[D].上海:东华大学,2014. ZHANG C. Research and simulation on effect of czochralski crystal based on the model predictive control[D]. Shanghai: Donghua University, 2014(in Chinese). [13] 杨 曼.直拉硅单晶生长中晶体直径模型辨识方法研究[D].西安:西安理工大学,2019. YANG M. Study on identification method of crystal diameter model in czochralski silicon single crystal growth[D]. Xi'an: Xi'an University of Technology, 2019(in Chinese). [14] WANG J Z, HOU R, WANG C, et al. Improved v-Support vector regression model based on variable selection and brain storm optimization for stock price forecasting[J]. Applied Soft Computing, 2016, 49: 164-178. [15] YU C J, LI Y L, BAO Y L, et al. A novel framework for wind speed prediction based on recurrent neural networks and support vector machine[J]. Energy Conversion and Management, 2018, 178: 137-145. [16] LIU P L, YAO X D, GE G Y, et al. A dynamic linearization modeling of thermally induced error based on data-driven control for CNC machine tools[J]. International Journal of Precision Engineering and Manufacturing, 2021, 22(2): 241-258. [17] 梁炎明,苏 芳,李 琦,等.基于支持向量机回归的T-S模糊模型自组织算法及应用[J].自动化学报,2013,39(12):2143-2149. LIANG Y M, SU F, LI Q, et al. A self-organizing algorithm for T-S fuzzy model based on support vector machine regression and its application[J]. Acta Automatica Sinica, 2013, 39(12): 2143-2149(in Chinese). [18] SHAH D, KLEMENZ C F. Delay-based control model for Czochralski growth of high-quality oxides[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1448-1454. [19] 严博涛.直拉单晶炉生长系统模型预测控制方法研究[D].西安:西安理工大学,2010. YAN B T. Czochralski crystal growth furnace system of model predictive control method[D]. Xi'an: Xi'an University of Technology, 2010(in Chinese). [20] 景坤雷.Cz硅单晶等径阶段热场温度建模与控制方法研究[D].西安:西安理工大学,2018. JING K L. Research on thermal field temperature modeling and control method of Cz silicon single crystal in constant-diameter growth stage[D]. Xi'an: Xi'an University of Technology, 2018(in Chinese). [21] 邱 勇,杨泽文,周鑫宇,等.基于BP神经网络的直角折线堰过流能力预测[J].水电能源科学,2021,39(3):74-77. QIU Y, YANG Z W, ZHOU X Y, et al. Prediction of overflow capability of right-angle polyline weir based on BP neural network[J]. Water Resources and Power, 2021, 39(3): 74-77(in Chinese). [22] 卢兆兴,吕志峰,李 婷,等.基于BP神经网络的地磁变化场预测研究[J].大地测量与地球动力学,2021,41(3):229-233. LU Z X, LÜ Z F, LI T, et al. Forecasting of the variable geomagnetic field based on BP neural network[J]. Journal of Geodesy and Geodynamics, 2021, 41(3): 229-233(in Chinese). [23] HOU W N, FANG XS, LI M H, et al. Stress fitting and forecast model of dams based on BP neural network[J]. IOP Conference Series: Earth and Environmental Science, 2020, 560(1): 12-28. [24] 王林军,史宝周,张 东,等.GA优化的LQR控制下3-UPS并联机器人稳定性分析[J].计算机集成制造系统,2021,4(2):1-17. WANG L J, SHI B Z, ZHANG D, et al. Stability analysis of parallel robot under linear quadratic regulator control based on genetic algorithm optimization[J]. Computer Integrated Manufacturing Systems, 2021, 4(2): 1-17(in Chinese). [25] HU T, WANG J H, LI G B, et al. Prediction of allowable debonding strain of {FRP}-strengthened {RC} beam based on {GA}-{BP} neural network[J]. {IOP} Conference Series: Earth and Environmental Science, 2021, 719(2): 022028. |