[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [2] 王振廷,戴东言,李 洋,等.石墨烯的机械剥离法制备及表征[J].黑龙江科技大学学报,2018,28(2):200-203. WANG Z T, DAI D Y, LI Y, et al. Graphene preparation by mechanical exfoliation and its characterization[J]. Journal of Heilongjiang University of Science and Technology, 2018, 28(2): 200-203(in Chinese). [3] BOURRELLIER R, MEURET S, TARARAN A, et al. Bright UV single photon emission at point defects in h-BN[J]. Nano Letters, 2016, 16(7): 4317-4321. [4] ZHOU W, ZOU X L, NAJMAEI S, et al. Intrinsic structural defects in monolayer molybdenum disulfide[J]. Nano Letters, 2013, 13(6): 2615-2622. [5] XU M S, LIANG T, SHI M M, et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5): 3766-3798. [6] BHIMANAPATI G R, LIN Z, MEUNIER V, et al. Recent advances in two-dimensional materials beyond graphene[J]. ACS Nano, 2015, 9(12): 11509-11539. [7] YANG X, XU M S, QIU W M, et al. Graphene uniformly decorated with gold nanodots: in situ synthesis, enhanced dispersibility and applications[J]. Journal of Materials Chemistry, 2011, 21(22): 8096. [8] EL-KADY M F, STRONG V, DUBIN S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science, 2012, 335(6074): 1326-1330. [9] DENG M, YANG X, SILKE M, et al. Electrochemical deposition of polypyrrole/graphene oxide composite on microelectrodes towards tuning the electrochemical properties of neural probes[J]. Sensors and Actuators B: Chemical, 2011, 158(1): 176-184. [10] XU M S, GAO Y, YANG X, et al. Unique synthesis of graphene-based materials for clean energy and biological sensing applications[J]. Chinese Science Bulletin, 2012, 57(23): 3000-3009. [11] FERRARI A C, BONACCORSO F, FAL'KO V, et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems[J]. Nanoscale, 2015, 7(11): 4598-4810. [12] BARSOUM M W. MAX phases: properties of machinable ternary carbides and nitrides[M]. John Wiley & Sons, 2013. [13] 姚送送,李 诺,叶红齐,等.二维MXene材料的制备与电化学储能应用[J].化学进展,2018,30(7):932-946. YAO S S, LI N, YE H Q, et al. Synthesis of two-dimensional MXene and their applications in electrochemical energy storage[J]. Progress in Chemistry, 2018, 30(7): 932-946(in Chinese). [14] 仲 鹏,张兴茂,王昱程,等.一种二维层状纳米材料MXene量子点的制备方法:中国,CN110272048A[P].2019-09-24. ZHONG P, ZHANG X M, WANG Y C, et al. A preparation method of two-dimensional layered nano material mxene quantum dots: China, CN110272048A[P]. 2019-09-24(in Chinese). [15] 雷 达.基于MXene的纳米复合材料制备及其电化学储能应用研究[D].宁波:中国科学院大学(中国科学院宁波材料技术与工程研究所),2019. LEI D. Preparation of nanocomposite materials based on MXene and their applications in electrochemical energy storage[D]. Ningbo: Chinese Academy of Sciences (Ningbo Institute of Materials and Technology Engineering), 2019(in Chinese). [16] 党阿磊,方成林,赵 曌,等.新型二维纳米材料MXene的制备及在储能领域的应用进展[J].材料工程,2020,48(4):1-14. DANG A, FANG C L, ZHAO Z, et al. Preparation of a new two-dimensional nanomaterial MXene and its application progress in energy storage[J]. Journal of Materials Engineering, 2020, 48(4): 1-14(in Chinese). [17] 吴松平,杜 丽,严玉蓉,等.一种含单层MXene纳米片的碳纤维复合材料及制备和应用: 中国, CN111082051A[P].2020-04-28. WU S P, DU L, YAN Y R, et al. A carbon fiber composite containing single-layer mxene nano sheet and its preparation and application: China, CN111082051A[P]. 2020-04-28(in Chinese). [18] KHAZAEI M, RANJBAR A, ARAI M, et al. Electronic properties and applications of MXenes: a theoretical review[J]. Journal of Materials Chemistry C, 2017, 5(10): 2488-2503. [19] ZHANG Y, LI F. Robust half-metallic ferromagnetism in Cr3C2 MXene[J]. Journal of Magnetism and Magnetic Materials, 2017, 433: 222-226. [20] BALCı E, AKKUŞÜ Ö, BERBER S. Band gap modification in doped MXene: Sc2Cf2[J]. Journal of Materials Chemistry C, 2017, 5(24): 5956-5961. [21] 李亚飞. 基于石墨烯及其无机同类物的计算研究和材料设计[D].天津:南开大学,2011. LI Y F. Computational study and material design based on graphene and its inorganic analogues [D]. Tianjin: Nankai University, 2011(in Chinese). [22] ZHOU T Y, ZHAO W, YANG K, et al. Atomic vacancy defect, Frenkel defect and transition metals (Sc, V, Zr) doping in Ti4N3 MXene nanosheet: a first-principles investigation[J]. Applied Sciences, 2020, 10(7): 2450. [23] 李 庚.ⅢA和ⅤA族纳米材料的电子结构和超导电性研究[D].北京:清华大学,2018. LI G. Study of electronic and superconducting properties in group ⅢA and ⅤA elements based nanostructures[D]. Beijing: Tsinghua University, 2018(in Chinese). [24] LI Y L, LV P. The tuning on the magnetism and the electronic structures of monolayer Ti2 N MXene by electric field[J]. Physica B: Condensed Matter, 2021, 618: 413183. [25] LIMBU Y, KAPHLE G C, KARN A L, et al. Unraveling electronic structure, magnetic states, and topological phenomena in pristine, defected, and strained Ti2N MXene[M]. 2021. [26] WANG C, XU J W, WANG Y Z, et al. MXene (Ti2NTx): synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser[J]. Science China Materials, 2021, 64(1): 259-265. [27] HUANG W C, HU L P, TANG Y F, et al. Recent advances in functional 2D MXene-based nanostructures for next-generation devices[J]. Advanced Functional Materials, 2020, 30(49): 2005223. [28] URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)[J]. Nanoscale, 2016, 8(22): 11385-11391. [29] SOUNDIRARAJU B, GEORGE B K. Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate[J]. ACS Nano, 2017, 11(9): 8892-8900. [30] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [31] BLÖCHL. Projector augmented-wave method[J]. Physical Review B, Condensed Matter, 1994, 50(24): 17953-17979. [32] GAO G Y, DING G Q, LI J, et al. Monolayer MXenes: promising half-metals and spin gapless semiconductors[J]. Nanoscale, 2016, 8(16): 8986-8994. |