[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
[2] JIN M S, KIM N O. Photoluminescence of hexagonal boron nitride (h-BN) film[J]. Journal of Electrical Engineering and Technology, 2010, 5(4): 637-639.
[3] YOUNES G, FERRO G, SOUEIDAN M, et al. Deposition of nanocrystalline translucent h-BN films by chemical vapor deposition at high temperature[J]. Thin Solid Films, 2012, 520(7): 2424-2428.
[4] MIAO H, ZHANG G W, HU X Y, et al. A novel strategy to prepare 2D g-C3N4 nanosheets and their photoelectrochemical properties[J]. Journal of Alloys and Compounds, 2017, 690: 669-676.
[5] MAK K F, LEE C G, HONE J, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805.
[6] AMIN B, KALONI T P, SCHWINGENSCHLGL U. Strain engineering of WS2, WSe2, and WTe2[J]. RSC Advances, 2014, 4(65): 34561.
[7] SMITH J B, HAGAMAN D, JI H F. Growth of 2D black phosphorus film from chemical vapor deposition[J]. Nanotechnology, 2016, 27(21): 215602.
[8] YE Y T, GUO Q B, LIU X F, et al. Two-dimensional GeSe as an isostructural and isoelectronic analogue of phosphorene: sonication-assisted synthesis, chemical stability, and optical properties[J]. Chemistry of Materials, 2017, 29(19): 8361-8368.
[9] GOMES L C, CARVALHO A. Phosphorene analogues: isoelectronic two-dimensional group-Ⅳ monochalcogenides with orthorhombic structure[J]. Physical Review B, 2015, 92(8): 085406.
[10] CHEN Z S, BISCARAS J, SHUKLA A. A high performance graphene/few-layer InSe photo-detector[J]. Nanoscale, 2015, 7(14): 5981-5986.
[11] KANG Z, MA Y N, TAN X Y, et al. MXene-silicon van der waals heterostructures for high-speed self-driven photodetectors[J]. Advanced Electronic Materials, 2017, 3(9): 1700165.
[12] BAI F, QI J J, LI F, et al. A high-performance self-powered photodetector based on monolayer MoS2/perovskite heterostructures[J]. Advanced Materials Interfaces, 2018, 5(6): 1701275.
[13] FEI X G, TAN H Y, CHENG B, et al. 2D/2D black phosphorus/g-C3N4 S-scheme heterojunction photocatalysts for CO2 reduction investigated using DFT calculations[J]. Acta Physico-Chimica Sinica, 2021, 37(6): 156-164(in Chinese).
[14] JU L, DAI Y, WEI W, et al. DFT investigation on two-dimensional GeS/WS2 van der Waals heterostructure for direct Z-scheme photocatalytic overall water splitting[J]. Applied Surface Science, 2018, 434: 365-374.
[15] AIERKEN Y, SEVIK C, GLSEREN O, et al. MXenes/graphene heterostructures for Li battery applications: a first principles study[J]. Journal of Materials Chemistry A, 2018, 6(5): 2337-2345.
[16] WANG Q J, TAN Q H, LIU Y K, et al. Tunable electronic properties and giant spontaneous polarization in graphene/monolayer GeS van der waals heterostructure[J]. Physica Status Solidi (b), 2019, 256(11): 1900194.
[17] ZHAO X, WANG M M, NIU W C, et al. Tunable band alignments and optical properties in vertical heterojunctions of SnS2 and MoSe2[J]. Solid State Communications, 2021, 323: 114103.
[18] WANG G Z, ZHANG L, LI Y M, et al. Biaxial strain tunable photocatalytic properties of 2D ZnO/GeC heterostructure[J]. Journal of Physics D: Applied Physics, 2020, 53(1): 015104.
[19] ZHANG Q, LI X P, WANG T X, et al. Band structure engineering of SnS2/polyphenylene van der Waals heterostructure via interlayer distance and electric field[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(3): 1521-1527.
[20] DIAO M J, LI H, HOU R P, et al. Vertical heterostructure of SnS-MoS2 synthesized by sulfur-preloaded chemical vapor deposition[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7423-7431.
[21] TAN D Z, WANG X F, ZHANG W J, et al. Carrier transport and photoresponse in GeSe/MoS2 heterojunction p-n diodes[J]. Small (Weinheim an Der Bergstrasse, Germany), 2018, 14(22): 1704559.
[22] YANG S X, WU M H, WANG B, et al. Enhanced electrical and optoelectronic characteristics of few-layer type-Ⅱ SnSe/MoS2 van der Waals heterojunctions[J]. ACS Applied Materials & Interfaces, 2017, 9(48): 42149-42155.
[23] XIN Y, WANG X X, CHEN Z, et al. Polarization-sensitive self-powered type-Ⅱ GeSe/MoS2 van der waals heterojunction photodetector[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15406-15413.
[24] HU Z Y, DING Y C, HU X M, et al. Recent progress in 2D group Ⅳ-Ⅳ monochalcogenides: synthesis, properties and applications[J]. Nanotechnology, 2019, 30(25): 252001.
[25] LI F, LIU X H, WANG Y, et al. Germanium monosulfide monolayer: a novel two-dimensional semiconductor with a high carrier mobility[J]. Journal of Materials Chemistry C, 2016, 4(11): 2155-2159.
[26] RAMASAMY P, KWAK D, LIM D H, et al. Solution synthesis of GeS and GeSe nanosheets for high-sensitivity photodetectors[J]. Journal of Materials Chemistry C, 2016, 4(3): 479-485.
[27] ULAGANATHAN R K, LU Y Y, KUO C J, et al. High photosensitivity and broad spectral response of multi-layered germanium sulfide transistors[J]. Nanoscale, 2016, 8(4): 2284-2292.
[28] FEI R X, LI W B, LI J, et al. Giant piezoelectricity of monolayer group Ⅳ monochalcogenides: SnSe, SnS, GeSe, and GeS[J]. Applied Physics Letters, 2015, 107(17): 173104.
[29] KIM H, SON Y, LEE J, et al. Nanocomb architecture design using germanium selenide as high-performance lithium storage material[J]. Chemistry of Materials, 2016, 28(17): 6146-6151.
[30] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential[J]. The Journal of Chemical Physics, 2003, 118(18): 8207-8215.
[31] LI X H, WANG B J, LI H, et al. Two-dimensional layered Janus-In2SeTe/C2N van der Waals heterostructures for photocatalysis and photovoltaics: first-principles calculations[J]. New Journal of Chemistry, 2020, 44(37): 16092-16100.
[32] VAUGHN D D, PATEL R J, HICKNER M A, et al. Single-crystal colloidal nanosheets of GeS and GeSe[J]. Journal of the American Chemical Society, 2010, 132(43): 15170-15172.
[33] ZHANG Z Y, SI M S, PENG S L, et al. Bandgap engineering in van der Waals heterostructures of blue phosphorene and MoS2: a first principles calculation[J]. Journal of Solid State Chemistry, 2015, 231: 64-69.
[34] WILSON J A, YOFFE A D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties[J]. Advances in Physics, 1969, 18(73): 193-335.
[35] MA S H, YUAN D Y, WANG Y R, et al. Monolayer GeS as a potential candidate for NO2 gas sensors and capturers[J]. Journal of Materials Chemistry C, 2018, 6(30): 8082-8091.
[36] FANG L Z, LI X P, GENG Z D, et al. Band alignment tuning in GeS/arsenene staggered heterostructures[J]. Journal of Alloys and Compounds, 2019, 793: 283-288.
[37] WANG S K, REN C D, TIAN H Y, et al. MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: a first-principles study[J]. Physical Chemistry Chemical Physics: PCCP, 2018, 20(19): 13394-13399.
[38] PEARSON R G. Absolute electronegativity and hardness: application to inorganic chemistry[J]. Inorganic Chemistry, 1988, 27(4): 734-740.
[39] ZHU D Y, ZHANG Q Y, LI X W, et al. Structural and electronic properties of MO2/MS2 heterojunctions and potential application in lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2021, 125(8): 4391-4396.
[40] XU Y, SCHOONEN M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. American Mineralogist, 2000, 85(3/4): 543-556.
[41] KANER N T, WEI Y D, JIANG Y J, et al. Enhanced shift currents in monolayer 2D GeS and SnS by strain-induced band gap engineering[J]. ACS Omega, 2020, 5(28): 17207-17214.
[42] YUN W S, HAN S W, HONG S C, et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M=Mo, W;X=S, Se, Te)[J]. Physical Review B, 2012, 85(3): 033305.
[43] PHUC H V, HIEU N N, HOI B D, et al. Tuning the electronic properties, effective mass and carrier mobility of MoS2 monolayer by strain engineering: first-principle calculations[J]. Journal of Electronic Materials, 2018, 47(1): 730-736.
[44] MA Y Q, ZHAO X, WANG T X, et al. Band structure engineering in a MoS2/PbI2 van der Waals heterostructure via an external electric field[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(41): 28466-28473. |