JOURNAL OF SYNTHETIC CRYSTALS ›› 2022, Vol. 51 ›› Issue (7): 1284-1299.
• Reviews • Previous Articles Next Articles
YANG Yang, LIU Zhirong
Received:
2022-04-10
Online:
2022-07-15
Published:
2022-08-11
[1] 任国浩.无机闪烁晶体在我国的发展史[J].人工晶体学报,2019,48(8):1373-1385. REN G H. Development history of inorganic scintillation crystals in China[J]. Journal of Synthetic Crystals, 2019, 48(8): 1373-1385(in Chinese). [2] 覃皓明,申南南,何亦辉.熔体法制备无机钙钛矿半导体核辐射探测晶体与器件的研究进展[J].人工晶体学报,2021,50(10):1830-1843. QIN H M, SHEN N N, HE Y H. Research progress on the melt-grown inorganic perovskite semiconductor single crystals and devices for nuclear radiation detection[J]. Journal of Synthetic Crystals, 2021, 50(10): 1830-1843(in Chinese). [3] 武 彤,王 玲,许天照,等.医疗CT用(Ce,Gd)3(Ga,Al)5O12(Ce∶GGAG)闪烁体的研究进展[J].应用技术学报,2021,21(2):109-125. WU T, WANG L, XU T Z, et al. Recent progress of(Ce, Gd)3(Ga, Al)5O12(Ce∶GGAG)scintillator for medical CT application[J]. Journal of Technology, 2021, 21(2): 109-125(in Chinese). [4] JOHNS P M, NINO J C. Room temperature semiconductor detectors for nuclear security[J]. Journal of Applied Physics, 2019, 126(4): 040902. [5] RÖNTGEN W C. On a new kind of rays[J]. Science, 1896, 3(59): 227-231. [6] 武 蕊,范东海,康 阳,等.半导体辐射探测材料与器件研究进展[J].人工晶体学报,2021,50(10):1813-1829. WU R, FAN D H, KANG Y, et al. Research progress on semiconductor materials and devices for radiation detection[J]. Journal of Synthetic Crystals, 2021, 50(10): 1813-1829(in Chinese). [7] OKAZAKI K, FUKUSHIMA H, NAKAUCHI D, et al. Investigation of Er∶Bi4Ge3O12 single crystals emitting near-infrared luminescence for scintillation detectors[J]. Journal of Alloys and Compounds, 2022, 903: 163834. [8] MIRZAEI A, HUH J S, KIM S S, et al. Room temperature hard radiation detectors based on solid state compound semiconductors: an overview[J]. Electronic Materials Letters, 2018, 14(3): 261-287. [9] YU D J, WANG P, CAO F, et al. Two-dimensional halide perovskite as β-ray scintillator for nuclear radiation monitoring[J]. Nature Communications, 2020, 11: 3395. [10] ZHANG C, LIU X L, CHEN J, et al. Solution and solid-phase growth of bulk halide perovskite single crystals[J]. Chinese Journal of Chemistry, 2021, 39(5): 1353-1363. [11] 丁 洁.杂化钙钛矿单晶光电探测器[D].北京:清华大学,2019. DING J. Hybrid perovskite single crystal photodetectors[D]. Beijing: Tsinghua University, 2019(in Chinese). [12] 王文贞.探测器用卤化物钙钛矿晶体的生长及其物理性能的研究[D].上海:上海大学,2020. WANG W Z. The growth and physical performances of halide perovskite single crystals for detectors[D]. Shanghai: Shanghai University, 2020(in Chinese). [13] ANDRIČEVIĆ P, FRAJTAG P, LAMIRAND V P, et al. Kilogram-scale crystallogenesis of halide perovskites for gamma-rays dose rate measurements[J]. Advanced Science, 2021, 8(2): 2001882. [14] SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization[J]. Nature Communications, 2015, 6: 7586. [15] SAIDAMINOV M I, ABDELHADY A L, MACULAN G, et al. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth[J]. Chemical Communications, 2015, 51(100): 17658-17661. [16] LIU X, XU M, HAO Y Y, et al. Solution-grown formamidinium hybrid perovskite (FAPbBr3) single crystals for α-particle and γ-ray detection at room temperature[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15383-15390. [17] FENG Y X, PAN L, WEI H T, et al. Low defects density CsPbBr3 single crystals grown by an additive assisted method for gamma-ray detection[J]. Journal of Materials Chemistry C, 2020, 8(33): 11360-11368. [18] ZHANG H J, WANG F B, LU Y F, et al. High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals[J]. Journal of Materials Chemistry C, 2020, 8(4): 1248-1256. [19] LI L Q, LIU X, ZHANG H J, et al. Enhanced X-ray sensitivity of MAPbBr3 detector by tailoring the interface-states density[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7522-7528. [20] RONG S S, XIAO Y Q, JIANG J X, et al. Strongly enhanced photoluminescence and photoconductivity in erbium-doped MAPbBr3 single crystals[J]. The Journal of Physical Chemistry C, 2020, 124(16): 8992-8998. [21] CHEN X M, ZHANG F, GE Y, et al. Centimeter-sized Cs4PbBr6 crystals with embedded CsPbBr3 nanocrystals showing superior photoluminescence: nonstoichiometry induced transformation and light-emitting applications[J]. Advanced Functional Materials, 2018, 28(16): 1706567. [22] LI Y, SHAO W Y, CHEN L, et al. Lead-halide Cs4PbBr6 single crystals for high-sensitivity radiation detection[J]. NPG Asia Materials, 2021, 13: 40. [23] YAO F, PENG J L, LI R M, et al. Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals[J]. Nature Communications, 2020, 11: 1194. [24] WEI S Y, TIE S J, SHEN K, et al. High-performance X-ray detector based on liquid diffused separation induced Cs3Bi2I9 single crystal[J]. Advanced Optical Materials, 2021, 9(22): 2101351. [25] ZHANG J Y, LI A F, LI B H, et al. Top-seed solution-based growth of perovskite Cs3Bi2I9 single crystal for high performance X-ray detection[J]. ACS Photonics, 2022, 9(2): 641-651. [26] HYUN K, KIM S J, TAISHI T. Effect of cobalt addition to Si-Cr solvent in top-seeded solution growth[J]. Applied Surface Science, 2020, 513: 145798. [27] ADELL I, PUJOL M C, SOLÉ R M, et al. Single crystal growth, optical absorption and luminescence properties under VUV-UV synchrotron excitation of type Ⅲ Pr3+∶KGd(PO3)4[J]. Scientific Reports, 2020, 10: 6712. [28] 陈 成.高能射线探测器用CsPbBr3单晶熔体法生长及离子迁移特性研究[D].武汉:华中科技大学,2019. CHEN C. The melting growth and ionic transport characteristics of CsPbBr3 single crystals for high-energy radiation detection use[D]. Wuhan: Huazhong University of Science and Technology, 2019(in Chinese). [29] 陈永仁.室温辐射探测器材料碲镁镉晶体的生长及性能表征[D].西安:长安大学,2020. CHEN Y R. Growth and characterization of magnesium magnesium telluride crystals at room temperature radiation detector[D]. Xi’an: Changan University, 2020(in Chinese). [30] 高 力.探测器级钒掺杂碲锰镉晶体生长及性能表征[D].西安:长安大学,2020. GAO L. Analyses of crystal growth and performance characterization of detector-grade vanadium doped cadmium manganese telluride crystal[D]. Xi’an: Changan University, 2020(in Chinese). [31] 张明智.室温核辐射探测用CsPbBr3单晶的熔体法生长及其性能研究[D].武汉:华中科技大学,2018. ZHANG M Z. The melting growth and properties of CsPbBr3 single crystals for room temperature nuclear radiation detection use[D]. Wuhan: Huazhong University of Science and Technology, 2018(in Chinese). [32] 章 政.K2LaX5∶Ce(X=Cl,Br)复合稀土卤化物闪烁晶体的生长与闪烁性能研究[D].宁波:宁波大学,2019. ZHANG Z. The growth and luminescence properties of K2LaX5∶Ce(X=Cl, Br) complex rare-earth halide scintillation[D]. Ningbo: Ningbo University, 2019(in Chinese). [33] 介万奇.Bridgman法晶体生长技术的研究进展[J].人工晶体学报,2012,41(S1):24-35. JIE W Q. Progress of bridgman crystal growth technology[J]. Journal of Synthetic Crystals, 2012, 41(S1): 24-35(in Chinese). [34] 李 涛.新型核辐射探测器用CdTe基化合物晶体生长与性能表征[D].西安:西安工业大学,2019. LI T. Investigations on growth and properties of CdTe-based compound crystals for nuclear radiation detection[D]. Xi'an: Xi'an Technological University, 2019(in Chinese). [35] 王 谦,王京康,成双良,等.零维钙钛矿结构Cs3Cu2Br5单晶的生长和X射线探测性能[J].人工晶体学报,2021,50(10):1919-1924. WANG Q, WANG J K, CHENG S L, et al. Crystal growth and X-ray detection performance of 0D Cs3Cu2Br5 single crystal perovskite[J]. Journal of Synthetic Crystals, 2021, 50(10): 1919-1924(in Chinese). [36] 孙啟皓,郝莹莹,张 鑫,等.Cs3Bi2I9晶体的生长及辐射探测性能[J].人工晶体学报,2021,50(10):1907-1912. SUN Q H, HAO Y Y, ZHANG X, et al. Growth and radiation detection properties of Cs3Bi2I9 crystal[J]. Journal of Synthetic Crystals, 2021, 50(10): 1907-1912(in Chinese). [37] HE Y H, STOUMPOS C C, HADAR I, et al. Demonstration of energy-resolved γ-ray detection at room temperature by the CsPbCl3 perovskite semiconductor[J]. Journal of the American Chemical Society, 2021, 143(4): 2068-2077. [38] YUAN L Y, NI H H, CHEN J F, et al. Effects of annealing on the optical and scintillation properties of reddish Bi4Ge3O12 single crystals[J]. Ceramics International, 2021, 47(9): 11856-11861. [39] LUAN L J, ZHANG J W, WANG T, et al. Vanadium doped Cd0.9Mn0.1Te crystal and its optical and electronic properties[J]. Journal of Crystal Growth, 2017, 459: 124-128. [40] 杜园园,姜维春,陈 晓,等.Te溶剂Bridgman法CdMnTe晶体核辐射探测器的制备和表征[J].人工晶体学报,2021,50(10):1892-1899. DU Y Y, JIANG W C, CHEN X, et al. Preparation and characterization of CdMnTe crystal nuclear radiation detector by Te solvent bridgman method[J]. Journal of Synthetic Crystals, 2021, 50(10): 1892-1899(in Chinese). [41] MATEI L, HAWRAMI R, BULIGA V, et al. Lithium indium diselenide: an advanced material for neutron detection[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1020: 165898. [42] YAMAJI A, KUROSAWA S, YOSHIKAWA A. Crystal growth and luminescence properties of phenanthrene for neutron detection[J]. Journal of Crystal Growth, 2022, 581: 126494. [43] YAMAJI A, KUROSAWA S, OHASHI Y, et al. Crystal growth and optical properties of organic crystals for neutron scintillators[J]. Plasma and Fusion Research, 2018, 13: 2405011. [44] YAMATO S, YAMAJI A, KUROSAWA S, et al. Crystal growth and luminescence properties of organic crystal scintillators for α-rays detection[J]. Optical Materials, 2019, 94: 58-63. [45] YAMAJI A, YAMATO S, KUROSAWA S, et al. Crystal growth and scintillation properties of carbazole for neutron detection[J]. IEEE Transactions on Nuclear Science, 2020, 67(6): 1027-1031. [46] 许文斌,王海丽,李 辉,等.对三联苯有机晶体的生长及性能[J].人工晶体学报,2021,50(10):1979-1983. XU W B, WANG H L, LI H, et al. Growth and properties of p-terphenyl organic crystals[J]. Journal of Synthetic Crystals, 2021, 50(10): 1979-1983(in Chinese). [47] 何君雨,李 雯,魏钦华,等.1英寸Cs2LiLaBr6∶Ce闪烁晶体的生长及性能研究[J].人工晶体学报,2021,50(10):1879-1882. HE J Y, LI W, WEI Q H, et al. Growth and properties of 1-inch Cs2LiLaBr6∶Ce scintillation crystal[J]. Journal of Synthetic Crystals, 2021, 50(10): 1879-1882(in Chinese). [48] 侯越云,桂 强,张春生,等.Cs2LiYCl6∶Ce晶体的n/γ双探测闪烁性能研究[J].人工晶体学报,2021,50(10):1933-1939. HOU Y Y, GUI Q, ZHANG C S, et al. Scintillation properties of Cs2LiYCl6∶Ce crystal for neutron and gamma dual detection[J]. Journal of Synthetic Crystals, 2021, 50(10): 1933-1939(in Chinese). [49] 王绍涵,吴云涛,李焕英,等.基质组分配比对Cs2LiYCl6∶Ce晶体生长及闪烁性能的影响[J].人工晶体学报,2021,50(10):1925-1932. WANG S H, WU Y T, LI H Y, et al. Effect of matrix composition ratio on the growth and scintillation properties of Cs2LiYCl6∶Ce crystal[J]. Journal of Synthetic Crystals, 2021, 50(10): 1925-1932(in Chinese). [50] 程 冉.提拉法生长设备研制及大尺寸YSO∶Ce闪烁晶体生长研究[D].武汉:华中科技大学,2017. CHENG R. Development of scintillation crystal Czochralski method equipment, and growth of YSO∶Ce scintillation crystal with large size[D]. Wuhan: Huazhong University of Science and Technology, 2017(in Chinese). [51] 狄聚青,刘运连,滕 飞,等.ø80 mm×200 mm级Ce∶LYSO晶体的生长与闪烁性能研究[J].人工晶体学报,2019,48(3):374-378. DI J Q, LIU Y L, TENG F, et al. Growth and scintillation properties of Ce∶LYSO crystal with size of ø80 mm×200 mm[J]. Journal of Synthetic Crystals, 2019, 48(3): 374-378(in Chinese). [52] 王 佳,岑 伟,丁雨憧,等. ø100 mm级Ca∶Ce∶LYSO闪烁晶体生长及闪烁性能研究[J].人工晶体学报,2021,50(10):1946-1950. WANG J, CEN W, DING Y C, et al. Growth and scintillation properties of ø100 mm Ca∶Ce∶LYSO crystal[J]. Journal of Synthetic Crystals, 2021, 50(10): 1946-1950(in Chinese). [53] 邵明国.钨酸铅晶体的生长及光学性能研究[D].温州:温州大学,2012. SHAO M G. Study on the growth and optical properties of lead tungstate[D]. Wenzhou: Wenzhou University, 2012 (in Chinese). [54] FRANK-ROTSCH C, DROPKA N, GLACKI A, et al. VGF growth of GaAs utilizing heater-magnet module[J]. Journal of Crystal Growth, 2014, 401: 702-707. [55] BALBAŞı Ö B, ÜNAL M, GENÇ A M, et al. Investigation of seeded vertical gradient freeze (VGF) growth of CdZnTe bulk crystals[J]. Journal of Crystal Growth, 2022, 584: 126573. [56] YANG J, LU W, DUAN M L, et al. VGF growth of high quality InAs single crystals with low dislocation density[J]. Journal of Crystal Growth, 2020, 531: 125350. [57] 邹征刚.微下拉法生长的铈掺杂LuAG/Al2O3和(Lu2/3Gd1/3)AG/Al2O3共晶的结构与发光性能研究[D].赣州:江西理工大学,2018. ZOU Z G. Structure and luminescence properties of cerium doped LuAG/Al2O3 and (Lu2/3Gd1/3)AG/Al2O3 eutectic grown by micro pull-down method[D]. Ganzhou: Jiangxi University of Science and Technology, 2018(in Chinese). [58] LU W, XU J, SONG Q S, et al. Spectroscopic properties of Tm∶Bi4Ge3O12 crystals grown by the micro-pulling-down method[J]. Journal of Luminescence, 2021, 238: 118199. [59] 马云峰,徐家跃,蒋毅坚,等.面向集装箱安检应用的Mg4Ta2O9闪烁晶体及其掺杂改性[J].人工晶体学报,2021,50(10):1870-1878. MA Y F, XU J Y, JIANG Y J, et al. Scintillation crystal Mg4Ta2O9 and its doping modification for container security applications[J]. Journal of Synthetic Crystals, 2021, 50(10): 1870-1878(in Chinese). [60] 陈军军.光学浮区法制备β-Ga2O3基晶体及其性能研究[D].沈阳:东北大学,2018. CHEN J J. Study on the preparation of crystal based on β-Ga2O3 by optical floating zone method and its properties[D]. Shenyang: Northeastern University, 2018 (in Chinese). [61] 黄诗敏,万欢欢,杨 帆,等. (Gd0.99-xYxCe0.01)2Si2O7晶体的生长及发光特性[J].人工晶体学报,2021,50(10):1951-1956. HUANG S M, WAN H H, YANG F, et al. Growth and crystal luminescence properties of cerium doped yttrium-gadolinium pyrosilicate[J]. Journal of Synthetic Crystals, 2021, 50(10): 1951-1956(in Chinese). [62] YUAN D S, MORETTI F, PERRODIN D, et al. Modified floating-zone crystal growth of Mg4Ta2O9 and its scintillation performance[J]. CrystEngComm, 2020, 22(20): 3497-3504. [63] 胡伟杰.物理气相传输法生长氮化铝晶体的研究[D].北京:中国科学院物理研究所,2020. HU W J. Studies of aluminum nitride crystals grown by physical vapor transport method[D]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2020(in Chinese). [64] YANG N J, LI H, WANG G, et al. A study of nucleation at initial growth stage of SiC single crystal by physical vapor transport[J]. Journal of Crystal Growth, 2022, 585: 126591. [65] KIM S K, JUNG E Y, LEE M H. Defect-induced luminescence quenching of 4H-SiC single crystal grown by PVT method through a control of incorporated impurity concentration[J]. Compounds, 2022, 2(1): 68-79. [66] WANG G D, ZHANG L, WANG Y, et al. Effect of temperature gradient on AlN crystal growth by physical vapor transport method[J]. Crystal Growth & Design, 2019, 19(11): 6736-6742. [67] 冯登满.二硫化钛的制备及其高压物性研究[D].长春:吉林大学,2021. FENG D M. Study of the synthesis and physical properties of titanium disulfide under high pressure[D]. Changchun: Jilin University, 2021(in Chinese). [68] SWIERKOWSKI S P, ARMANTROUT G A, WICHNER R. Recent advances with HgI2 X-ray detectors[J]. IEEE Transactions on Nuclear Science, 1974, 21(1): 302-304. [69] WEI Y C, LIU C Y, MA E, et al. Optical properties of mid-infrared Cr2+∶ZnSe single crystals grown by chemical vapor transporting with NH4Cl[J]. Optical Materials Express, 2021, 11(3): 664. [70] HE Y H, DAS S, LIU Z F, et al. Controlling the vapor transport crystal growth of Hg3Se2I2 hard radiation detector using organic polymer[J]. Crystal Growth & Design, 2019, 4: 2074-2080. |
[1] | LIN Haixin, GAO Dedong, WANG Shan, ZHANG Zhenzhong, AN Yan, ZHANG Wenyong. Multi-Physics Field Modeling and Optimization of Large-Size Czochralski Silicon Single Crystal Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 17-33. |
[2] | TANG Jia, SUN Zhicheng, ZHANG Zubang, LUO Hui. Research Progress on the Growth of Large-Sized CsPbBr3 Crystals by the Melt Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 1-10. |
[3] | XU Wanli, GAN Yunhai, LI Yuewen, LI Bin, ZHENG Youdou, ZHANG Rong, XIU Xiangqian. High Rate HVPE Growth of High Uniformity 6-Inch GaN Thick Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 11-16. |
[4] | ZHAO Qingsong, NIU Xiaodong, GU Xiaoying, DI Juqing. Growth and Properties of Large Size Ultra High Purity Germanium Single Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 34-39. |
[5] | JIAO Sihui, WU Hongping, YU Hongwei. CsBa2ScB8O16: the First Rare-Earth Borate Simultaneously Containing Zero-Dimensional [B3O6] Units and One-Dimensional B—O Chains [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1550-1559. |
[6] | ZHAO Ya, ZHUANG Zhong, WEI Mengyuan, JIANG Qingsong, YANG Xiao, XUN Wei, LIU Yuhao. Effect of Sulfur-Rich Precursor Solution on Photovoltaic Performance of CuPbSbS3 Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1640-1647. |
[7] | SUN Yuanlong, HU Ziyu, ZHENG Guozong. Growth and Photoelectric Properties Characterization of Large-Sized CH3NH3PbBr3 Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1313-1318. |
[8] | MA Qisi, LIU Jianggao, SHE Weilin, CAO Cong, ZHANG Lichao, ZHAO Chao, FAN Yexia, ZHOU Zhenqi. Effect of Furnace Air Convection on the Temperature Field of Tellurium Zinc Cadmium Crystal Growth Based on CGSim Simulation [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1344-1351. |
[9] | LING Hao, XU Le, CHEN Sixian, TANG Yuanzhi, SUN Haibin, GUO Xue, FENG Yurun, HU Qiangqiang. Growth and Optical Properties of Large Size CsCu2I3 Single Crystal by Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1121-1126. |
[10] | LI Haoqing, SU Yu. Phase Field Study on Domain Structure Evolution of BaTiO3 Nano Single Crystal Thin Films under Applied Electric Field [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1136-1149. |
[11] | LIANG Min, XIONG Ruibin, CHEN Shuli, WANG Zujian, SU Rongbing, SU Bin, LIU Ying, HE Chao. Uniformity of Piezoelectric Properties of PIN-PMN-PT Ferroelectric Single Crystals Modulated by Polarization Technique [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 953-958. |
[12] | GU Peng, LEI Pei, YE Shuai, HU Jin, WU Ge. Research Progress on the Growth of Silicon Carbide Single Crystal via Top-Seeded Solution Growth Method and Its Key Issues [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 741-759. |
[13] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
[14] | XING Jiabin, LI Wei, JIA Songyan, MA Yali, LI Xue, ZHENG Qiang. Preparation of Highly Dispersed Nano Calcium Carbonate by Low-Temperature Carbonization Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 864-872. |
[15] | HUANG Changbao, HU Qianqian, ZHU Zhicheng, LI Ya, MAO Changyu, XU Junjie, WU Haixin, NI Youbao. Growth and Device Fabrication of Mid to Far-Infrared Cr2+/Fe2+∶CdSe Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(4): 551-553. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||