[1] 赵国忠. 太赫兹科学技术研究的新进展[J]. 国外电子测量技术, 2014, 33(2): 1-6+20. ZHAO G Z. Progress on terahertz science and technology[J]. Foreign Electronic Measurement Technology, 2014, 33(2): 1-6+20 (in Chinese). [2] ENGHETA N, ZIOLKOWSKI R W. Metamaterials: physics and engineering explorations[M]. Hoboken, NJ: Wiley-Interscience, 2006. [3] SUZUKI T, KONDOH S. Negative refractive index metasurface in the 20-THz band[J]. Optical Materials Express, 2018, 8(7): 1916. [4] YIN S, CHEN Y T, QUAN B G, et al. Coupling-enabled chirality in terahertz metasurfaces[J]. Nanophotonics, 2023, 12(7): 1317-1326. [5] PENDRY J B, HOLDEN A J, STEWART W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773-4776. [6] SMITH D R, SCHULTZ S, MARKOŠ P, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Physical Review B, 2002, 65(19): 195104. [7] YANG S Y, LIU Z, XIA X X, et al. Excitation of ultrasharp trapped-mode resonances in mirror-symmetric metamaterials[J]. Physical Review B, 2016, 93(23): 235407. [8] 向天宇, 雷 涛, 沈钊阳,等. 基于平面环偶极子超材料的Fano共振[J]. 激光与光电子学进展, 2021, 58(9): 0916001. XIANG T Y, LEI T, SHEN Z Y, et al. Fano resonances in planar toroidal metamaterials[J]. Laser & optoelectrionics Progress, 2021, 58(9): 0916001. [9] MIROSHNICHENKO, FLACH, KIVSHAR. Fano resonances in nanoscale structures[J]. Reviews of Modern Physics, 2010, 82(3): 2257-2298. [10] LUK′YANCHUK B, ZHELUDEV N I, MAIER S A, et al. The fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials, 2010, 9(9): 707-715. [11] FEDOTOV V A, ROSE M, PROSVIRNIN S L, et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Physical Review Letters, 2007, 99(14): 147401. [12] SINGH R, AL-NAIB I A I, KOCH M, et al. Sharp fano resonances in THz metamaterials[J]. Optics Express, 2011, 19(7): 6312. [13] CHEN M, SINGH L, XU N N, et al. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials[J]. Optics Express, 2017, 25(13): 14089. [14] GUO K, ZHANG Y L, QIAN C, et al. Electric dipole-quadrupole hybridization induced enhancement of second-harmonic generation in T-shaped plasmonic heterodimers[J]. Optics Express, 2018, 26(9): 11984. [15] DICKEN M J, AYDIN K, PRYCE I M, et al. Frequency tunable near-infrared metamaterials based on VO2 phase transition[J]. Optics Express, 2009, 17(20): 18330. [16] SÁMSON Z L, MACDONALD K F, DE ANGELIS F, et al. Metamaterial electro-optic switch of nanoscale thickness[J]. Applied Physics Letters, 2010, 96(14): 143105. [17] NIKOLAENKO A E, DE ANGELIS F, BODEN S A, et al. Carbon nanotubes in a photonic metamaterial: giant ultrafast nonlinearity through plasmon-exciton coupling[C]//Conference on Lasers and Electro-Optics 2010. San Jose, CA. Washington, D.C.: OSA, 2010. [18] 钟明亮, 李 山, 熊祖洪, 等. 十字形银纳米结构的表面等离子体光子学性质[J]. 物理学报, 2012, 61(2): 027803. ZHONG M L, LI S, XIONG Z H, et al. Plasmonic properties of silver cross-shape nanostructure[J]. Acta Physica Sinica, 2012, 61(2): 027803 (in Chinese). [19] KAZANTZIS P G, DESINIOTIS C D. Four dipole problem equilibrium configurations[J]. Astrophysics and Space Science, 2000, 274(4): 819-836. [20] KAZANTZIS P G, DESINIOTIS C D. Planar symmetric periodic orbits in four dipole problem[J]. Astrophysics and Space Science, 2005, 295(3): 339-362. [21] YU B, ZENG F, YANG Y, et al. Torsional vibrational modes of tryptophan studied by terahertz time-domain spectroscopy[J]. Biophysical Journal, 2004, 86(3): 1649-1654. [22] YAHIAOUI R, STRIKWERDA A C, JEPSEN P U. Terahertz plasmonic structure with enhanced sensing capabilities[J]. IEEE Sensors Journal, 2016, 16(8): 2484-2488. |