[1] CHEN H, YU X, WANG X N, et al. Dyeing and finishing wastewater treatment in China: state of the art and perspective[J]. Journal of Cleaner Production, 2021, 326: 129353. [2] 何晨曦, 房浩亮, 古丽加衣娜尔·巴合提, 等. 印染废水处理研究进展[J]. 轻纺工业与技术, 2021, 50(8): 130-131. HE C X, FANG H L, GULIJIAYINAER B H T, et al. Research progress of printing and dyeing wastewater treatment[J]. Light and Textile Industry and Technology, 2021, 50(8): 130-131 (in Chinese). [3] HOLKAR C R, JADHAV A J, PINJARI D V, et al. A critical review on textile wastewater treatments: possible approaches[J]. Journal of Environmental Management, 2016, 182: 351-366. [4] 王新华, 洪 燕. 纺织印染废水深度治理案例分析探讨[J]. 资源节约与环保, 2021(8): 99-100. WANG X H, HONG Y. Case study on advanced treatment of textile printing and dyeing wastewater[J]. Resources Economization & Environmental Protection, 2021(8): 99-100 (in Chinese). [5] 任钢锋. 我国工业印染废水处理状况研究[J]. 节能与环保, 2021(4): 76-78. REN G F. Study on the treatment of industrial printing and dyeing wastewater in China[J]. Energy Conservation & Environmental Protection, 2021(4): 76-78 (in Chinese). [6] WANG Y Z, CHANG M D, PAN Y, et al. Performance analysis and optimization of ammonium removal in a new biological folded non-aerated filter reactor[J]. Science of the Total Environment, 2019, 688: 505-512. [7] ZHU Y L, WANG W Z, NI J, et al. Cultivation of granules containing anaerobic decolorization and aerobic degradation cultures for the complete mineralization of azo dyes in wastewater[J]. Chemosphere, 2020, 246: 125753. [8] 刘玲玲. 印染废水处理技术研究[J]. 化纤与纺织技术, 2021, 50(3): 15-16. LIU L L. Study on treatment technology of printing and dyeing wastewater[J]. Chemical Fiber & Textile Technology, 2021, 50(3): 15-16 (in Chinese). [9] LIU L M, CHEN Z, ZHANG J W, et al. Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: a review[J]. Journal of Water Process Engineering, 2021, 42: 102122. [10] 李 瑞, 张 潇, 张璐璐, 等. 原位合成Bi3O4Br/Bi12O17Br2光催化剂及其对磺胺甲噁唑降解性能[J]. 人工晶体学报, 2021, 50(9): 1735-1744. LI R, ZHANG X, ZHANG L L, et al. In-situ preparation of Bi3O4Br/Bi12O17Br2 photocatalyst and their degradation performances of sulfamethoxazole[J]. Journal of Synthetic Crystals, 2021, 50(9): 1735-1744 (in Chinese). [11] PADMINI M, BALAGANAPATHI T, THILAKAN P. Mesoporous rutile TiO2: synthesis, characterization and photocatalytic performance studies[J]. Materials Research Bulletin, 2021, 144: 111480. [12] KHAN M, YI Z, GUL S R, et al. Anomalous photodegradation response of Ga, N codoped TiO2 under visible light irradiations: an interplay between simulations and experiments[J]. Journal of Physics and Chemistry of Solids, 2017, 110: 241-247. [13] ALI T, AHMED A, ALAM U, et al. Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light[J]. Materials Chemistry and Physics, 2018, 212: 325-335. [14] EL MAKSOD I H A, AL-SHEHRI A, BAWAKED S, et al. Structural and photocatalytic properties of precious metals modified TiO2-BEA zeolite composites[J]. Molecular Catalysis, 2017, 441: 140-149. [15] 王 月, 李 雪, 王春杰. Li2CO3-Y3+共掺杂TiO2纳米材料的制备及光催化性能的研究[J]. 人工晶体学报, 2019, 48(5): 861-866. WANG Y, LI X, WANG C J. Preparation and photocatalytic properties of Li2CO3-Y3+ co-doped TiO2 nanomaterials[J]. Journal of Synthetic Crystals, 2019, 48(5): 861-866 (in Chinese). [16] SHARMA A, NEGI P, KONWAR R J, et al. Tailoring of structural, optical and electrical properties of anatase TiO2 via doping of cobalt and nitrogen ions[J]. Journal of Materials Science & Technology, 2022, 111: 287-297. [17] LAZAU C, POIENAR M, ORHA C, et al. Development of a new “n-p” heterojunction based on TiO2 and CuMnO2 synergy materials[J]. Materials Chemistry and Physics, 2021, 272: 124999. [18] MENG X F, CHEN X Y, SUN W X, et al. Highly efficient photocatalytic CO2 reduction with an organic dye as photosensitizer[J]. Inorganic Chemistry Communications, 2021, 129: 108617. [19] 张国庆. 二氧化钛半导体光催化剂的制备、改性及其光催化性能研究[D]. 长春: 吉林大学, 2020. ZHANG G Q. Study on preparation, modification and photocatalytic performance of titanium dioxide semiconductor photocatalyst[D].Changchun: Jilin University, 2020 (in Chinese). [20] 郝辰春. 二氧化钛复合结构的制备及光电化学性质[D]. 北京: 北京邮电大学, 2020. HAO C C. Preparation and photoelectrochemical properties of titanium dioxide composite structure[D]. Beijing: Beijing University of Posts and Telecommunications, 2020 (in Chinese). [21] SHETTY K V. Solar light active biogenic titanium dioxide embedded silver oxide (AgO/Ag2O@TiO2) nanocomposite structures for dye degradation by photocatalysis[J]. Materials Science in Semiconductor Processing, 2021, 132: 105923. [22] 刘 静, 杨璐冰, 李 晨, 等. ML-WO3/TiO2异质结的制备及其对罗丹明B的光催化降解[J]. 精细化工, 2022, 39(12): 2456-2466. LIU J, YANG L B, LI C, et al. Preparation of ML-WO3/TiO2 heterojunction and its photocatalytic degradation of rhodamine B[J]. Fine Chemicals, 2022, 39(12): 2456-2466 (in Chinese). [23] YANG T, CHEN J, YANG X F, et al. A novel Z-scheme heterojunction Bi12O17Br2/TiO2 with exposed{001}facet nanoparticles for the degradation of tetracycline under visible light[J]. Materials Today Communications, 2023, 34: 105187. [24] VAKIFAHMETOGLU C, ZEYDANLI D, COLOMBO P. Porous polymer derived ceramics[J]. Materials Science and Engineering: R: Reports, 2016, 106: 1-30. [25] HAN N, YAO Z X, YE H, et al. Efficient removal of organic pollutants by ceramic hollow fibre supported composite catalyst[J]. Sustainable Materials and Technologies, 2019, 20: e00108. [26] ZHOU X H, SONG K H, LI Z H, et al. The excellent catalyst support of Al2O3 fibers with needle-like mullite structure and HMF oxidation into FDCA over CuO/Al2O3 fibers[J]. Ceramics International, 2019, 45(2): 2330-2337. [27] LANG Y, ZHAO L, DAI X, et al. Preparation of porous YSZ ceramics by ball milling foaming-freeze drying process[J]. Ceramics International, 2020, 46(7): 9834-9838. [28] 兰凤仪, 杨名昊, 兰 天, 等. 具有碳化硅纳米线编织结构的氧化铝泡沫陶瓷的制备及性能研究[J]. 人工晶体学报, 2022, 51(7): 1275-1283. LAN F Y, YANG M H, LAN T, et al. Synthesis and properties of alumina foam ceramics with SiC nanowires braided structure[J]. Journal of Synthetic Crystals, 2022, 51(7): 1275-1283 (in Chinese). [29] 王子鑫, 花开慧, 欧阳浈, 等. 造孔剂对环保型多孔吸声陶瓷结构和性能的影响[J]. 陶瓷学报, 2021, 42(4): 681-687. WANG Z X, HUA K H, OUYANG Z, et al. Influence of pore former on structure and performance of environment-friendly porous sound-absorbing ceramics[J]. Journal of Ceramics, 2021, 42(4): 681-687 (in Chinese). [30] 阿拉腾沙嘎, 陈 星, 陈冠宏. 冷冻铸造法制备仿生梯度层状结构SiC多孔陶瓷[J]. 陶瓷学报, 2022, 43(1): 90-99. ALATENG S, CHEN X, CHEN G H. Preparation of bio-inspired SiC porous ceramics with gradient lamellar structure with freeze casting[J]. Journal of Ceramics, 2022, 43(1): 90-99 (in Chinese). [31] JIN Y C, ZHANG B, YE F, et al. Development of ethylene glycol-based gelcasting for the preparation of highly porous SiC ceramics[J]. Ceramics International, 2020, 46(6): 7896-7902. [32] 花开慧. 绿色莫来石晶须骨架多孔陶瓷的制备与性能[D]. 广州: 华南理工大学, 2017. HUA K H. Preparation and properties of green mullite whisker skeleton porous ceramics[D].Guangzhou: South China University of Technology, 2017 (in Chinese). [33] SIMOVIĆ B, RADOVANOVIĆ , BRANKOVIĆ G, et al. Hydrothermally synthesized CeO2/ZnO nanocomposite photocatalysts for the enhanced degradation of reactive orange 16 dye[J]. Materials Science in Semiconductor Processing, 2023, 162: 107542. [34] ISMAEL M. Latest progress on the key operating parameters affecting the photocatalytic activity of TiO2-based photocatalysts for hydrogen fuel production: a comprehensive review[J]. Fuel, 2021, 303: 121207. [35] YAO B, ZHANG J, FAN X L, et al. Surface engineering: surface engineering of nanomaterials for photo-electrochemical water splitting[J]. Small, 2019, 15(1): 1803746. |