JOURNAL OF SYNTHETIC CRYSTALS ›› 2024, Vol. 53 ›› Issue (1): 25-37.
• Reviews • Previous Articles Next Articles
MA Yulin1,2,3, GUO Xiang1,2,3, DING Zhao1,2,3
Received:
2023-06-04
Online:
2024-01-15
Published:
2024-01-15
CLC Number:
MA Yulin, GUO Xiang, DING Zhao. Research Progress on the Preparation and Application of GaAsBi Semiconductor Materials[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(1): 25-37.
[1] AHN H J, CHANG W I, KIM S M, et al. 28 GHz GaAs pHEMT MMICs and RF front-end module for 5G communication systems[J]. Microwave and Optical Technology Letters, 2019, 61(4): 878-882. [2] GAITONDE J, LOHANI R B. GaAs OPFET for 5G applications[C]//Proceedings of AICTE sponsored International Virtual Conference on Antenna Innovations, 5G Communications and Network Technologies (ICA5 NT 2020), Panchetti, India. 2020: 6-7. [3] PIPREK J. Optoelectronic devices[M]. Berlin: Springer Verlag, 2004. [4] PIPREK J. Semiconductor optoelectronic devices: introduction to physics and simulation[M]. Newyork: Academic Press, 2003. [5] FREGOLENT M, BUFFOLO M, DE SANTI C, et al. Deep levels and carrier capture kinetics in n-GaAsBi alloys investigated by deep level transient spectroscopy[J]. Journal of Physics D: Applied Physics, 2021, 54(34): 345109. [6] LIU X, WANG L J, FANG X A, et al. Continuous wave operation of GaAsBi microdisk lasers at room temperature with large wavelengths ranging from 127 to 141 μm[J]. Photonics Research, 2019, 7(5): 508. [7] WU X Y, PAN W W, ZHANG Z P, et al. 1.142 μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy[J]. ACS Photonics, 2017, 4(6): 1322-1326. [8] RICHARDS R D, BAILEY N J, LIU Y C, et al. GaAsBi: from molecular beam epitaxy growth to devices[J]. Physica Status Solidi (b), 2022, 259(2): 2100330. [9] PAN W W, WANG L J, ZHANG Y C, et al. MBE growth strategy and optimization of GaAsBi quantum well light emitting structure beyond 1.2 μm[J]. Applied Physics Letters, 2019, 114(15): 152102. [10] ARLAUSKAS A, SVIDOVSKY P, BERTULIS K, et al. GaAsBi photoconductive terahertz detector sensitivity at long excitation wavelengths[J]. Applied Physics Express, 2012, 5(2): 022601. [11] PAČEBUTAS V, STANIONYTĖ S, ARLAUSKAS A, et al. Terahertz excitation spectra of GaAsBi alloys[J]. Journal of Physics D: Applied Physics, 2018, 51(47): 474001. [12] PATIL P K, LUNA E, MATSUDA T, et al. GaAsBi/GaAs multi-quantum well LED grown by molecular beam epitaxy using a two-substrate-temperature technique[J]. Nanotechnology, 2017, 28(10): 105702. [13] THOMAS T, MELLOR A, HYLTON N P, et al. Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell[J]. Semiconductor Science and Technology, 2015, 30(9): 094010. [14] BALANTA M G, KOPACZEK J, ORSI GORDO V, et al. Optical and spin properties of localized and free excitons in GaBixAs1-x/GaAs multiple quantum wells[J]. Journal of Physics D: Applied Physics, 2016, 49(35): 355104. [15] UEDA O, IKENAGA N, HORITA Y, et al. Structural evaluation of GaAs1-xBix obtained by solid-phase epitaxial growth of amorphous GaAs1-xBix thin films deposited on (0 0 1) GaAs substrates[J]. Journal of Crystal Growth, 2023, 601: 126945. [16] TOMINAGA Y, KINOSHITA Y, FENG G, et al. Growth of GaAs1-xBix/GaAs multi-quantum wells by molecular beam epitaxy[J]. Physica Status Solidi C, 2008, 5(9): 2719-2721. [17] ROY D, SAMAJDAR D P, BISWAS A. Photovoltaic performance improvement of GaAs1-xBix nanowire solar cells in terms of light trapping capability and efficiency[J]. Solar Energy, 2021, 221: 468-475. [18] DAS S, SHARMA A S, DAS T D, et al. Dependence of heavy hole exciton binding energy and the strain distribution in GaAs1-xBix/GaAs finite spherical quantum dots on Bi content in the material[J]. Superlattices and Microstructures, 2015, 86: 221-227. [19] PTAK A J, FRANCE R, BEATON D A, et al. Kinetically limited growth of GaAsBi by molecular-beam epitaxy[J]. Journal of Crystal Growth, 2012, 338(1): 107-110. [20] RAJPALKE M K, LINHART W M, BIRKETT M, et al. Growth and properties of GaSbBi alloys[J]. Applied Physics Letters, 2013, 103(14): 142106. [21] SVENSSON S P, HIER H, SARNEY W L, et al. Molecular beam epitaxy control and photoluminescence properties of InAsBi[J]. Journal of Vacuum Science & Technology B, 2012, 30(2): 02B109. [22] WANG K, GU Y, ZHOU H F, et al. InPBi single crystals grown by molecular beam epitaxy[J]. Scientific Reports, 2014, 4: 5449. [23] LEVANDER A X, NOVIKOV S V, LILIENTAL-WEBER Z, et al. Growth and transport properties of p-type GaNBi alloys[J]. Journal of Materials Research, 2011, 26(23): 2887-2894. [24] DANG P, JENA D. Molecular beam epitaxy and magnetotransport of InBi and InNBi crystals for high spin-orbit interaction[C]. APS March Meeting Abstracts, 2018 [25] WANG S M, LU P F. Bismuth-containing alloys and nanostructures[M]. Berlin: Springer, 2019. [26] OE K, OKAMOTO H. New semiconductor alloy GaAs1-xBix grown by metal organic vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 1998, 37(11A): L1283. [27] YOSHIMOTO M, MURATA S, CHAYAHARA A, et al. Metastable GaAsBi alloy grown by molecular beam epitaxy[J]. Japanese Journal of Applied Physics, 2003, 42(Part 2, No. 10B): L1235-L1237. [28] LU X, BEATON D A, LEWIS R B, et al. Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1-xBix[J]. Applied Physics Letters, 2008, 92(19): 192110. [29] LEWIS R B, MASNADI-SHIRAZI M, TIEDJE T. Growth of high Bi concentration GaAs1-xBix by molecular beam epitaxy[J]. Applied Physics Letters, 2012, 101(8): 082112. [30] KINI R N, BHUSAL L, PTAK A J, et al. Electron hall mobility in GaAsBi[J]. Journal of Applied Physics, 2009, 106(4): 043705. [31] KINI R N, PTAK A J, FLUEGEL B, et al. Effect of Bi alloying on the hole transport in the dilute bismide alloy GaAs1-x Bix[J]. Physical Review B, 2011, 83(7): 075307. [32] KADO K, FUYUKI T, YAMADA K, et al. High hole mobility in GaAs1-xBix alloys[J]. Japanese Journal of Applied Physics, 2012, 51(4R): 040204. [33] PETTINARI G, A PATANÈ, POLIMENI A, et al. Bi-induced p-type conductivity in nominally undoped Ga(AsBi)[J]. Applied Physics Letters, 2012, 100(9): 092109. [34] MOHMAD A R, BASTIMAN F, HUNTER C J, et al. Localization effects and band gap of GaAsBi alloys[J]. Physica Status Solidi (B), 2014, 251(6): 1276-1281. [35] TAIT C R, YAN L F, MILLUNCHICK J M. Droplet induced compositional inhomogeneities in GaAsBi[J]. Applied Physics Letters, 2017, 111(4): 042105. [36] STEVENS M A, GROSSKLAUS K A, VANDERVELDE T E. Strain stabilization of far from equilibrium GaAsBi films[J]. Journal of Crystal Growth, 2019, 527: 125216. [37] REYES D F, BASTIMAN F, HUNTER C J, et al. Bismuth incorporation and the role of ordering in GaAsBi/GaAs structures[J]. Nanoscale Research Letters, 2014, 9(1): 23. [38] HONOLKA J, HOGAN C, VONDRÁČEK M, et al. Electronic properties of GaAsBi(001) alloys at low Bi content[J]. Physical Review Materials, 2019, 3(4): 044601. [39] PATIL P, TATEBE T, NABARA Y, et al. Growth of GaAsBi/GaAs multi quantum wells on (100) GaAs substrates by molecular beam epitaxy[J]. e-Journal of surface science and nanotechnology, 2015, 13: 469-473. [40] PATIL P K, SHIMOMURA S, ISHIKAWA F, et al. Strategic molecular beam epitaxial growth of GaAs/GaAsBi heterostructures and nanostructures[M]//WANG S, LU P. Bismuth-Containing Alloys and Nanostructures. Singapore: Springer, 2019: 59-96. [41] RICHARDS R D, BASTIMAN F, HUNTER C J, et al. Molecular beam epitaxy growth of GaAsBi using As2 and As4[J]. Journal of Crystal Growth, 2014, 390: 120-124. [42] PATIL P K, ISHIKAWA F, SHIMOMURA S. GaAsBi/GaAs MQWs grown by MBE using a two-substrate-temperature technique[J]. Journal of Alloys and Compounds, 2017, 725: 694-699. [43] CHAKIR K, BILEL C, HABCHI M M, et al. Discontinuities and bands alignments of strain-balanced III-V-N/III-V-Bi heterojunctions for mid-infrared photodetectors[J]. Superlattices and Microstructures, 2017, 102: 56-63. [44] MOHMAD A R, BASTIMAN F, HUNTER C J, et al. Bismuth concentration inhomogeneity in GaAsBi bulk and quantum well structures[J]. Semiconductor Science and Technology, 2015, 30(9): 094018. [45] AHN N, ARAKI Y, KONDOW M, et al. Effects of growth interruption, As and Ga fluxes, and nitrogen plasma irradiation on the molecular beam epitaxial growth of GaAs/GaAsN core-shell nanowires on Si(111)[J]. Japanese Journal of Applied Physics, 2014, 53(6): 065001. [46] BLEL S, BILEL C. Atomistic mechanism effects on the growth of GaAsBi and GaAs nanowires[J]. Solid State Communications, 2022, 347: 114722. [47] 张 斌. GaAs(Sb, Bi)半导体及其纳米线体系的红外光学和极化特性研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2018. ZHANG B. Study on infrared optics and polarization characteristics of GaAs(Sb, Bi) semiconductor and its nanowire system[D].Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2018 (in Chinese). [48] DASIKA V D, KRIVOY E M, NAIR H P, et al. Increased InAs quantum dot size and density using bismuth as a surfactant[J]. Applied Physics Letters, 2014, 105(25): 253104. [49] WANG L J, LIANG H, SHEN Z H, et al. Bismuth-related nanostructures[M]//WANG S, LU P. Bismuth-Containing Alloys and Nanostructures. Singapore: Springer, 2019: 181-199. [50] WU M J, LUNA E, PUUSTINEN J, et al. Formation and phase transformation of Bi-containing QD-like clusters in annealed GaAsBi[J]. Nanotechnology, 2014, 25(20): 205605. [51] LUNA E, WU M, HANKE M, et al. Spontaneous formation of three-dimensionally ordered Bi-rich nanostructures within GaAs1-xBix/GaAs quantum wells[J]. Nanotechnology, 2016, 27(32): 325603. [52] SKAPAS M, STANIONYTĖ S, PAULAUSKAS T, et al. HRTEM study of size-controlled Bi quantum dots in annealed GaAsBi/AlAs multiple quantum well structure[J]. Physica Status Solidi (B), 2019, 256(5): 1800365. [53] FITOURI H, CHAKIR K, CHINE Z, et al. Photoluminescence of GaAsBi/GaAs quantum dots grown by metalorganic vapor phase epitaxy[J]. Materials Letters, 2015, 152: 45-47. [54] PAN W W, ZHANG L Y, ZHU L A, et al. Optical properties and band bending of InGaAs/GaAsBi/InGaAs type-II quantum well grown by gas source molecular beam epitaxy[J]. Journal of Applied Physics, 2016, 120(10): 105702. [55] GLEMA J, PALENSKIS V, GEIUTIS A, et al. Low-frequency noise investigation of 1.09 μm GaAsBi laser diodes[J]. Materials, 2019, 12(4): 673. [56] BATOOL Z, HILD K, HOSEA T J C, et al. The electronic band structure of GaBiAs/GaAs layers: influence of strain and band anti-crossing[J]. Journal of Applied Physics, 2012, 111(11): 113108. [57] HOSSAIN N, MARKO I P, JIN S R, et al. Recombination mechanisms and band alignment of GaAs1-xBix/GaAs light emitting diodes[J]. Applied Physics Letters, 2012, 100(5): 051105. [58] LUDEWIG P, KNAUB N, HOSSAIN N, et al. Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser[J]. Applied Physics Letters, 2013, 102(24): 242115. [59] RICHARDS R D, HUNTER C J, BASTIMAN F, et al. Telecommunication wavelength GaAsBi light emitting diodes[J]. IET Optoelectronics, 2016, 10(2): 34-38. [60] ZHANG M X, ZHANG L Y, ZHANG Z Y, et al. GaAsBi quantum dots for 1.55 μm laser diode[J]. Electronic Materials Letters, 2021, 17(2): 181-187. |
[1] | LIU Hong, ZHAO Jingbo, YAO Hong, HAN Donghai, ZHANG Xiaosheng, WANG Chen, ZHANG Guangjun. Bandgaps of a Helmholtz-Type Phononic Crystal with Adjustable Chamber [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(4): 590-597. |
[2] | ZHANG Wenqian, SUN Wei, CAO Duo, NIU Yajie, WU Wenrong, WANG Dongfei. Synthesis of a Barium Metal-Organic Framework and Its Crystal Structure and Fluorescence Property [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(8): 1370-1377. |
[3] | HAN Yuebin, PU Yong, SHI Jianxin. Advances in Chemical Vapor Deposition Equipment Used for SiC Epitaxy [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(7): 1300-1308. |
[4] | ZHU Huaqiang, LONG Kailin, LIU Fengkun. Low-Cost Indium Tin Oxide Substrates: Preparation and Its Surface Enhanced Raman Scattering Effect [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(2): 263-270. |
[5] | NIU Ben, WU Jun, WANG Kaifeng, HUANG Chengbin, FU Hao, ZHU Bolin, LI Taotao, YAO Yagang. Structure and Transparent Conductive Properties of (Ti/ZnO)N Compositionally Modulated Nano Multilayer Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(8): 1478-1484. |
[6] | LIU Guofeng, ZUO Ran. Quantum Chemistry Study on Gas Reactions Involved with Radicals in GaN-MOVPE Process [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(3): 469-476. |
[7] | WANG Yi, LI Zhihong, DING Zhao, YANG Chen, LUO Zijiang, WANG Jihong, GUO Xiang. Study on the Formation Mechanism of Al(In) Nanostructures on GaAs(001) by Droplet Epitaxy [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(12): 2225-2231. |
[8] | KONG Jincheng, LI Yanhui, YANG Chunzhang, YANG Jin, QIN Gang, CHEN Weiye, CHEN Xiaoxuan, REN Yang, WANG Shanli, HU Xu, WANG Xiangqian, LI Xiongjun, ZHAO Jun. Progress in MBE Growth of HgCdTe at Kunming Institute of Physics [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2020, 49(12): 2221-2229. |
[9] | TANG Bin-long;ZHANG Hong;ZUO Ran. Surface Adsorption and Diffusion of GaN Thin Film Grown by MOVPE [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2017, 46(5): 766-771. |
[10] | ZUO Chao-chao;ZUO Ran;TONG Yu-zhen;ZHANG Guo-yi. Study on Surface Adsoption of m-plane GaN Grown by MOVPE [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2016, 45(8): 2022-2027. |
[11] | DUAN Ji-xiang;WANG Guan;HOU Hong-ying;LIU Xian-xi;LIU Song;YAO Yuan;LIAO Qi-shu. Effect of the Fluoride-containing Electrolyte Cycle Number (n≤15)on Morphology and Electrochemical Performances of TiO2 Nanotube Arrays Anode for Lithium-ion Battery [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2016, 45(7): 1808-1811. |
[12] | LIU Xu-dong;BI Xiao-guo;TANG Jian;CAI Yun-ping;SUN Xu-dong. Numerical Simulation of Temperature Distribution in Growth Chamber for Preparation of Rutile Single Crystal with Flame Fusion Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2016, 45(1): 138-145. |
[13] | YANG Wei;XIANG Dong;DU Fei;WANG Wei;TIAN Hao. Influence of the Key Structures and the Main Process Parameters on the Etching Property of Chamber of Wet Etching Machine [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2015, 44(4): 1056-1062. |
[14] | WANG Wei;XIANG Dong;YANG Wei;XIA Huan-xiong;ZHANG Han. Numerical Optimization of a Chamber Structure Design for the Wet Etching [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2014, 43(5): 1110-1114. |
[15] | CAO Xue;SHU Yong-chun;YE Zhi-cheng;PI Biao;YAO Jiang-hong;XING Xiao-dong;XU Jing-jun. Thermodynamic Analysis of InGaP/GaAs Heterostructures Grown by Solid-source Molecular Beam Epitaxy [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2010, 39(6): 1406-1411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||