[1] ALLIOUX F M, GHASEMIAN M B, XIE W J, et al. Applications of liquid metals in nanotechnology[J]. Nanoscale Horizons, 2022, 7(2): 141-167. [2] BAHARFAR M, KALANTAR-ZADEH K. Emerging role of liquid metals in sensing[J]. ACS Sensors, 2022, 7(2): 386-408. [3] BLEVINS J, YANG G. On optical properties and scintillation performance of emerging Ga2O3∶crystal growth, emission mechanisms and doping strategies[J]. Materials Research Bulletin, 2021, 144: 111494. [4] BOMHARD E M. The toxicology of gallium oxide in comparison with gallium arsenide and indium oxide[J]. Environmental Toxicology and Pharmacology, 2020, 80: 103437. [5] BOSI M, MAZZOLINI P, SERAVALLI L, et al. Ga2O3 polymorphs: tailoring the epitaxial growth conditions[J]. Journal of Materials Chemistry C, 2020, 8(32): 10975-10992. [6] CHEN X H, REN F F, GU S L, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381. [7] CHEN Z W, SAITO K, TANAKA T, et al. Efficient pure green emission from Er-doped Ga2O3 films[J]. CrystEngComm, 2017, 19(31): 4448-4458. [8] CHI Z Y, ASHER J J, JENNINGS M R, et al. Ga2O3 and related ultra-wide bandgap power semiconductor oxides: new energy electronics solutions for CO2 emission mitigation[J]. Materials, 2022, 15(3): 1164. [9] COOKE J, SENSALE-RODRIGUEZ B, GHADBEIGI L. Methods for synthesizing β-Ga2O3 thin films beyond epitaxy[J]. Journal of Physics: Photonics, 2021, 3(3): 032005. [10] DONG H, XUE H W, HE Q M, et al. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material[J]. Journal of Semiconductors, 2019, 40(1): 011802. [11] FU B, JIA Z T, MU W X, et al. A review of β-Ga2O3 single crystal defects, their effects on device performance and their formation mechanism[J]. Journal of Semiconductors, 2019, 40(1): 011804. [12] GALAZKA Z. β-Ga2O3 for wide-bandgap electronics and optoelectronics[J]. Semiconductor Science and Technology, 2018, 33(11): 113001. [13] GALAZKA Z, GANSCHOW S, IRMSCHER K, et al. Bulk single crystals of β-Ga2O3 and Ga-based spinels as ultra-wide bandgap transparent semiconducting oxides[J]. Progress in Crystal Growth and Characterization of Materials, 2021, 67(1): 100511. [14] GONZALEZ E A, JASEN P V, LUNA C R, et al. Adsorption of hydrogen on β-Ga2O3(100): a theoretical study[J]. Surface Review and Letters, 2007, 14(1): 79-86. [15] GUO D, GUO Q, CHEN Z, et al. Review of Ga2O3-based optoelectronic devices[J]. Materials Today Physics, 2019, 11: 100157. [16] GUO D Y, LI P G, CHEN Z W, et al. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector[J]. Acta Physica Sinica, 2019, 68(7): 078501. [17] GUPTA C, PASAYAT S S. Vertical GaN and vertical Ga2O3 power transistors: status and challenges[J]. Physica Status Solidi (a), 2022, 219(7): 2100659. [18] HIGASHIWAKI M. β-gallium oxide devices: progress and outlook[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2021, 15(11): 2100357. [19] HIGASHIWAKI M, MURAKAMI H, KUMAGAI Y, et al. Current status of Ga2O3 power devices[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202A1. [20] HOU X H, ZOU Y N, DING M F, et al. Review of polymorphous Ga2O3 materials and their solar-blind photodetector applications[J]. Journal of Physics D: Applied Physics, 2021, 54(4): 043001. [21] HUAN Y W, SUN S M, GU C J, et al. Recent advances in β-Ga2O3-metal contacts[J]. Nanoscale Research Letters, 2018, 13(1): 246. [22] KIM J, PEARTON S J, FARES C, et al. Radiation damage effects in Ga2O3 materials and devices[J]. Journal of Materials Chemistry C, 2019, 7(1): 10-24. [23] 焦 腾, 李赜明, 王 谦, 等. Ga2O3/GaN/蓝宝石模板上β-Ga2O3薄膜的生长[J]. 发光学报, 2020, 41(3): 281-287. JIAO T, LI Z M, WANG Q, et al. Growth of β-Ga2O3 thin films on Ga2O3/GaN/sapphire template[J]. Chinese Journal of Luminescence, 2020, 41(3): 281-287 (in Chinese). [24] 李赜明, 余 烨, 焦 腾, 等. 两步氧化法制备β-Ga2O3薄膜[J]. 发光学报, 2019, 40(10): 1247-1253. LI Z M, YU Y, JIAO T, et al. Preparation of β-Ga2O3 films by two-step thermal oxidation[J]. Chinese Journal of Luminescence, 2019, 40(10): 1247-1253 (in Chinese). [25] LI Z D, JIAO T, DONG X, et al. 高厚度n型β-Ga2O3薄膜的MOCVD制备[J]. Chinese Journal of Luminescence, 2022, 43(4): 545-551 (in Chinese). [26] GU K Y, ZHANG Z L, TANG K, et al. Effect of a seed layer on microstructure and electrical properties of Ga2O3 films on variously oriented Si substrates[J]. Vacuum, 2022, 195: 110671. [27] HUANG J A, LI B, MA Y C, et al. Effect of homo-buffer layers on the properties of sputtering deposited Ga2O3 films[J]. IOP Conference Series: Materials Science and Engineering, 2018, 362: 012003. [28] DENBAARS S P, MAA B Y, DAPKUS P D, et al. Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD[J]. Journal of Crystal Growth, 1986, 77(1/2/3): 188-193. [29] WAGNER G, BALDINI M, GOGOVA D, et al. Homoepitaxial growth of β-Ga2O3 layers by metal-organic vapor phase epitaxy[J]. Physica Status Solidi (a), 2014, 211(1): 27-33. |