[1] MUKHERJEE S, SAMANTA D, MUKHERJEE P S. New structural topologies in a series of 3d metal complexes with isomeric phenylenediacetates and 1, 3, 5-tris(1-imidazolyl)benzene ligand: syntheses, structures, and magnetic and luminescence properties[J]. Crystal Growth & Design, 2013, 13(12): 5335-5343. [2] KAUR R, KAUR A, UMAR A, et al. Metal organic framework (MOF) porous octahedral nanocrystals of Cu-BTC: synthesis, properties and enhanced adsorption properties[J]. Materials Research Bulletin, 2019, 109: 124-133. [3] JIANG Y X, DONG J P, SUN F G, et al. Two Cd-MOFs with different types of channels based on phenylimidazole dicarboxylic acids: synthesis, crystal structure and solid fluorescence properties[J]. Journal of Molecular Structure, 2022, 1250: 131874. [4] 黄妙龄, 陈亮莹, 赵俞秉, 等. 4-硝基氮氧化吡啶-2-甲酸构筑的镧、镨配合物的合成、晶体结构及荧光性质[J]. 人工晶体学报, 2023, 52(1): 125-131. HUANG M L, CHEN L Y, ZHAO Y B, et al. Synthesis, crystal structure and fluorescence properties of lanthanum and praseodymium complexes constructed by 2-carboxylic acid-4-nitropyridine-1-oxide[J]. Journal of Synthetic Crystals, 2023, 52(1): 125-131 (in Chinese). [5] XIONG Z F, JIA H L, MA B, et al. Syntheses, crystal structures, and properties of three Co(II) supramolecules constructed from phenyl imidazole dicarboxylates[J]. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2012, 42(8): 1204-1210. [6] ALOMARI A D, ALEZI D, ABDEL SALAM M. Synthesis and characterization of terbium-based metal organic framework for environmental remediation application[J]. Catalysts, 2023, 13(2): 241. [7] JIA J, QIN Z S, DONG W W, et al. Controlled fabrication of Ag nanoparticles in situ embedded in metal organic gel (MOG) as an efficient recyclable catalyst for the reduction of nitrophenol compounds[J]. Inorganic Chemistry Communications, 2021, 129: 108633. [8] ARJMANDI M, ALTAEE A, ARJMANDI A, et al. A facile and efficient approach to increase the magnetic property of MOF-5[J]. Solid State Sciences, 2020, 106: 106292. [9] FUJITA Y, KOHAKU K, KOMIYAMA N, et al. Colorless magnetic colloidal particles based on an amorphous metal-organic framework using holmium as the metal species[J]. ChemNanoMat, 2022, 8(7): e202200078. [10] HAMEDI A, ZARANDI M B, NATEGHI M R. Highly efficient removal of dye pollutants by MIL-101(Fe) metal-organic framework loaded magnetic particles mediated by poly L-dopa[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102882. [11] CHENG Y, FENG Q C, YIN M, et al. A fluorescence and colorimetric ammonia sensor based on a Cu(II)-2, 7-bis(1-imidazole)fluorene metal-organic gel[J]. Tetrahedron Letters, 2016, 57(34): 3814-3818. [12] DE J VELÁSQUEZ-HERNÁNDEZ M, LINARES-MOREAU M, BRANDNER L A, et al. Fabrication of 3D oriented MOF micropatterns with anisotropic fluorescent properties[J]. Advanced Materials, 2023, 35(25): 2211478. [13] GENG J, LI Y Y, LIN H Y, et al. A new three-dimensional zinc(ii) metal-organic framework as a fluorescence sensor for sensing the biomarker 3-nitrotyrosine[J]. Dalton Transactions, 2022, 51(30): 11390-11396. [14] CHEN Y L, HUANG W, CHEN K J, et al. A novel electrochemical sensor based on core-shell-structured metal-organic frameworks: the outstanding analytical performance towards chlorogenic acid[J]. Talanta, 2019, 196: 85-91. [15] GAO L L, GAO T, ZHANG Y J, et al. A bifunctional 3D porous Zn-MOF: fluorescence recognition of Fe3+ and adsorption of Congo red/methyl orange dyes in aqueous medium[J]. Dyes Pigments, 2022, 197: 109945. [16] 刘厚亭, 丁 利, 周传聪, 等. 一个基于3-(3',5'-二羧基苯基)-6-羧基吡啶的Co-MOF的合成、结构及质子传导性能[J]. 无机化学学报, 2023, 39(4): 596-606. LIU H T, DING L, ZHOU C C, et al. Synthesis, structure, and proton conductivity of a co-MOF based on 3-(3', 5'-dicarboxyphenyl)-6-carboxylic pyridine[J]. Chinese Journal of Inorganic Chemistry, 2023, 39(4): 596-606 (in Chinese). [17] LI J, WANG R, DONG Z Y, et al. Postdecorated polyoxometalate metal-organic framework-constructed ternary electrocatalysts for hydrogen evolution[J]. Crystal Growth & Design, 2023, 23(9): 6403-6409. [18] WEN L L, LU Z D, LIN J G, et al. Syntheses, structures, and physical properties of three novel metal-organic frameworks constructed from aromatic polycarboxylate acids and flexible imidazole-based synthons[J]. Crystal Growth & Design, 2007, 7(1): 93-99. [19] WEN L L, LI Y Z, LU Z D, et al. Syntheses and structures of four d10 Metal Organic frameworks assembled with aromatic polycarboxylate and bix[bix = 1, 4-bis(imidazol-1-ylmethyl)benzene[J]. Crystal Growth & Design, 2006, 6(2): 530-537. [20] WANG X F, ZHOU H, LIU G X. Two zinc(II) coordination polymers based on 1, 3, 5-tris(imidazole-1-yl)benzene and phenylene-diacetate isomers[J]. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2016, 46(10): 1473-1479. [21] SUN D, YAN Z H, BLATOV V A, et al. Syntheses, topological structures, and photoluminescences of six new Zn(II) coordination polymers based on mixed tripodal imidazole ligand and varied polycarboxylates[J]. Crystal Growth & Design, 2013, 13(3): 1277-1289. [22] BAI Y, ZHANG M L, WANG B T, et al. Four MOFs with isomeric ligands as fluorescent probes for highly selective, sensitive and stable detection of antibiotics in water[J]. CrystEngComm, 2022, 24(1): 169-181. [23] ZHANG M L, LU X F, BAI Y, et al. Three Cd(II) coordination polymers containing phenylenediacetate isomers: luminescence sensing and adsorption antibiotics performance in water[J]. Dyes and Pigments, 2022, 202: 110172. [24] LIU L, LU X Y, ZHANG M L, et al. 2D MOF nanosheets as an artificial light-harvesting system with enhanced photoelectric switching performance[J]. Inorganic Chemistry Frontiers, 2022, 9(11): 2676-2682. [25] SHELDRICK G M. SHELXS-97. Program for the solution of crystal structures[CP]. University of Göttingen, 1997. [26] SHELDRICK G M. SHELXS-97. Program for the refinement of crystal structures[CP]. University of Göttingen, 1997. [27] LV H H, ZHANG X B, WANG F M, et al. ZIF-67-assisted construction of hollow core/shell cactus-like MnNiCo trimetal electrodes and Co, N dual-doped carbon electrodes for high-performance hybrid supercapacitors[J]. Journal of Materials Chemistry A, 2020, 8(28): 14287-14298. [28] SHI X, WANG H, JI S, et al. CoNiSe2 nanorods directly grown on Ni foam as advanced cathodes for asymmetric supercapacitors[J]. Chemical Engineering Journal, 2019, 364: 320-327. |