[1] ZHAO X, HUANG D, LI G, et al. High sensitivity X-ray detector based on a 25 μm-thick ZnO film[J]. Sensors and Actuators A: Physical, 2022, 334(1): 113310. [2] ENDO H, CHIBA T, MEGURO K, et al. Fabrication and characterization of a ZnO X-ray sensor using a high-resistivity ZnO single crystal grown by the hydrothermal method[J]. Nuclear Inst and Methods in Physics Research, A, 2011, 665: 15-18. [3] KASAP S, FREY J B, BELEV G, et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors[J]. Sensors, 2011, 11(5): 5112-5157. [4] WELLINGS J, CHAURE N, HEAVENS S, et al. Growth and characterisation of electrodeposited ZnO thin films[J]. Thin Solid Films, 2008, 516(12): 3893-3898. [5] UNO K, TAUCHI Y, TANAKA I. ZnO thick film growth on n-GaN by photoassisted electrodeposition[J]. Japanese Journal of Applied Physics, 2013, 52(8): 08JE16. [6] MAROTTI R E, GUERRA D N, BELLO C, et al. Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential[J]. Solar Energy Materials & Solar Cells, 2004, 82(1-2):85-103. [7] XU L F, GUO Y, LIAO Q, et al. Morphological control of ZnO nanostructures by electrodeposition[J]. The Journal of Physical Chemistry B, 2005, 109(28): 13519-13522. [8] GHASEMPOUR ARDAKANI A, PAZOKI M, MAHDAVI S M, et al. Ultraviolet photodetectors based on ZnO sheets: the effect of sheet size on photoresponse properties[J]. Applied Surface Science, 2012, 258(14): 5405-5411. [9] CHEN J L, CHEN D, ZHOU Y, et al. Electrochemical deposition of Al-doped ZnO transparent conducting nanowire arrays for thin-film solar cell electrodes[J]. Materials Letters, 2014, 117: 162-164. [10] XIAO C, SUN S, LAI Q. Direct electrodeposition of ZnO nanosheets film on plastic substrate[J]. IOP Conference Series Materials Science and Engineering, 2020, 761(1): 012008. [11] SIELMANN C, WALUS K, STOEBER B. Zinc exhaustion in ZnO electrodeposition[J]. Thin Solid Films, 2015, 592: 76-80. [12] TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi (b), 1966, 15(2): 627-637. [13] RAO T P, KUMAR M, ANGAYARKANNI S A, et al. Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis[J]. Journal of Alloys & Compounds, 2009, 485(1-2): 413-417. [14] BAGNALL D M, CHEN Y F, SHEN M Y, et al. Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE[J]. Journal of Crystal Growth, 1998, 184/185(1/2): 605-609. [15] SELIM F A, WEBER M H, SOLODOVNIKOV D, et al. Nature of native defects in ZnO[J]. Physical Review Letters, 2007, 99(8): 085502. [16] TON-THAT C, WESTON L, PHILLIPS M R. Characteristics of point defects in the green luminescence from Zn- and O-rich ZnO[J]. Physical Review B, 2012, 86(11): 115205. [17] LV J, LI C. Evidences of VO, VZn, and Oi defects as the green luminescence origins in ZnO[J]. Applied Physics Letters, 2013, 103(2013): 232114-1. [18] CAGLAR Y, CAGLAR M, ILICAN S. XRD, SEM, XPS studies of Sb doped ZnO films and electrical properties of its based Schottky diodes[J]. Optik, 2018, 164: 424-432. [19] ABDEL-WAHAB M, JILANI A, YAHIA I, et al. Enhanced the photocatalytic activity of Ni-doped ZnO thin films: morphological, optical and XPS analysis[J]. Superlattices and Microstructures, 2016, 94: 108-118. [20] KABONGO G L, MHLONGO G H, MOTHUDI B M, et al. Structural, photoluminescence and XPS properties of Tm3+ ions in ZnO nanostructures[J]. Journal of Luminescence: An Interdisciplinary Journal of Research on Excited State Processes in Condensed Matter, 2017, 187: 141-153. [21] LIAO Z M, LV Z K, ZHOU Y B, et al. The effect of adsorbates on the space-charge-limited current in single ZnO nanowires[J]. Nanotechnology, 2008, 19(33): 335204. |