JOURNAL OF SYNTHETIC CRYSTALS ›› 2024, Vol. 53 ›› Issue (7): 1239-1248.
• Research Articles • Previous Articles Next Articles
LI Lihua, ZHOU Longjie, LIU Shuo, WANG Hang, HUANG Jinliang
Received:2024-03-26
Online:2024-07-15
Published:2024-07-23
CLC Number:
LI Lihua, ZHOU Longjie, LIU Shuo, WANG Hang, HUANG Jinliang. First-Principles Study on Electronic Structure and Optical Properties of SnO2 (110)/FAPbBrI2 (001) Interface[J]. Journal of Synthetic Crystals, 2024, 53(7): 1239-1248.
| [1] FUJIWARA H, PODRAZA N J, ALONSO M I, et al. Organic-inorganic hybrid perovskite solar cells[M]//FUJIWARA H, COLLINS R. Spectroscopic Ellipsometry for Photovoltaics. Cham: Springer, 2018: 463-507. [2] CAO X B, HAO L, LIU Z J, et al. All green solvent engineering of organic-inorganic hybrid perovskite layer for high-performance solar cells[J]. Chemical Engineering Journal, 2022, 437: 135458. [3] YANG Z B, RAJAGOPAL A, JEN A K Y. Ideal bandgap organic-inorganic hybrid perovskite solar cells[J]. Advanced Materials, 2017, 29(47): 1704418. [4] SONG J S, LIU H P, PU W H, et al. Thermal instability originating from the interface between organic-inorganic hybrid perovskites and oxide electron transport layers[J]. Energy & Environmental Science, 2022, 15(11): 4836-4849. [5] LI W, ROTHMANN M U, ZHU Y, et al. The critical role of composition-dependent intragrain planar defects in the performance of MA1-xFAxPbI3 perovskite solar cells[J]. Nature Energy, 2021, 6: 624-632. [6] ALI N, SHEHZAD N, UDDIN S, et al. A review on perovskite materials with solar cell prospective[J]. International Journal of Energy Research, 2021, 45(14): 19729-19745. [7] SMECCA E, NUMATA Y, DERETZIS I, et al. Stability of solution-processed MAPbI3 and FAPbI3 layers[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(19): 13413-13422. [8] MUHAMMAD Z, LIU P T, AHMAD R, et al. Tunable relativistic quasiparticle electronic and excitonic behavior of the FAPb(I1-xBrx)3 alloy[J]. Physical Chemistry Chemical Physics, 2020, 22(21): 11943-11955. [9] DAI J, FU Y P, MANGER L H, et al. Carrier decay properties of mixed cation formamidinium-methylammonium lead iodide perovskite [HC(NH2)2]1-x[CH3NH3]xPbI3 nanorods[J]. The Journal of Physical Chemistry Letters, 2016, 7(24): 5036-5043. [10] ZHOU Y Y, ZHOU Z M, CHEN M, et al. Doping and alloying for improved perovskite solar cells[J]. Journal of Materials Chemistry A, 2016, 4(45): 17623-17635. [11] COLELLA S, MOSCONI E, FEDELI P, et al. MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties[J]. MRS Online Proceedings Library, 2014, 1667(1): 41-46. [12] WEHRENFENNIG C, LIU M Z, SNAITH H J, et al. Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3-xClx[J]. The Journal of Physical Chemistry Letters, 2014, 5(8): 1300-1306. [13] LEHMANN F, FRANZ A, TÖBBENS D M, et al. The phase diagram of a mixed halide (Br, I) hybrid perovskite obtained by synchrotron X-ray diffraction[J]. RSC Advances, 2019, 9(20): 11151-11159. [14] FAN W S, SHI Y L, SHI T F, et al. Suppression and reversion of light-induced phase separation in mixed-halide perovskites by oxygen passivation[J]. ACS Energy Letters, 2019, 4(9): 2052-2058. [15] LV S L, PANG S P, ZHOU Y Y, et al. One-step, solution-processed formamidinium lead trihalide (FAPbI(3-x) Clx) for mesoscopic perovskite-polymer solar cells[J]. Physical Chemistry Chemical Physics, 2014, 16(36): 19206-19211. [16] LYU M, PARK N G. Effect of additives AX (A=FA, MA, Cs, Rb, NH4, X=Cl, Br, I) in FAPbI3 on photovoltaic parameters of perovskite solar cells[J]. Solar RRL, 2020, 4(10): 2000331. [17] ZHU J, QIAN Y T, LI Z J, et al. Defect healing in FAPb(I1-xBrx)3 perovskites: multifunctional fluorinated sulfonate surfactant anchoring enables >21% modules with improved operation stability[J]. Advanced Energy Materials, 2022, 12(20): 2200632. [18] MAYENGBAM R, MAZUMDER J T. Revealing the ground-state geometry, optoelectronic, mechanical and thermodynamic behaviors, and efficiency of formamidinium mixed halide perovskites for solar cell applications[J]. International Journal of Energy Research, 2022, 46(12): 17556-17575. [19] LONG M Z, ZHANG T K, XU W Y, et al. Large-grain formamidinium PbI3-xBrx for high-performance perovskite solar cells via intermediate halide exchange[J]. Advanced Energy Materials, 2017, 7(12): 1601882. [20] WANG M, DUAN J L, DU J, et al. High-efficiency all-inorganic perovskite solar cells tailored by scalable rutile TiO2 nanorod arrays with excellent stability[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12091-12098. [21] 司浩楠, 张 铮, 廖庆亮, 等. ZnO纳米结构及其在钙钛矿光伏电池中的应用[J]. 科学通报, 2020, 65(25): 2721-2739. SI H N, ZHANG Z, LIAO Q L, et al. ZnO nanostructures and the application in perovskite solar cells[J]. Chinese Science Bulletin, 2020, 65(25): 2721-2739 (in Chinese). [22] WANG H, YUAN J F, XI J H, et al. Multiple-function surface engineering of SnO2 nanoparticles to achieve efficient perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2021, 12(37): 9142-9148. [23] 卢 岳, 葛 杨, 隋曼龄. 紫外光辐照下CH3NH3PbI3基钙钛矿太阳能电池失效机制[J]. 物理化学学报, 2022, 38(5): 76-86. LU Y, GE Y, SUI M L. Degradation mechanism of CH3NH3PbI3-based perovskite solar cells under ultraviolet illumination[J]. Acta Physico-Chimica Sinica, 2022, 38(5): 76-86 (in Chinese). [24] LIU H F, HUANG Z R, WEI S Y, et al. Nano-structured electron transporting materials for perovskite solar cells[J]. Nanoscale, 2016, 8(12): 6209-6221. [25] ZHANG Z, KANG Z, LIAO Q L, et al. One-dimensional ZnO nanostructure-based optoelectronics[J]. Chinese Physics B, 2017, 26(11): 118102. [26] MANSPEAKER C, SCRUGGS P, PREISS J, et al. Reliable annealing of CH3NH3PbI3 films deposited on ZnO[J]. The Journal of Physical Chemistry C, 2016, 120(12): 6377-6382. [27] DKHISSI Y, MEYER S, CHEN D H, et al. Stability comparison of perovskite solar cells based on zinc oxide and titania on polymer substrates[J]. ChemSusChem, 2016, 9(7): 687-695. [28] PALAI A, PANDA N R, SAHOO M R, et al. Study on the electronic band structure of ZnO-SnO2 heterostructured nanocomposites with mechanistic investigation on the enhanced photoluminescence and photocatalytic properties[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(12): 9599-9615. [29] ZHANG Z, LUO B C, WANG X, et al. Electronic structure and optical properties of SnO2/HC(NH2)2PbI3 interfaces from first-principles calculations[J]. Surfaces and Interfaces, 2021, 23: 100913. [30] WANG V, XU N, LIU J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033. [31] 丁 超, 李 卫, 刘菊燕, 等. Sb, S共掺杂SnO2电子结构的第一性原理分析[J]. 物理学报, 2018, 67(21): 213102. DING C, LI W, LIU J Y, et al. First principle study of electronic structure of Sb, S Co-doped SnO2[J]. Acta Physica Sinica, 2018, 67(21): 213102 (in Chinese). [32] WANG Y F, MEI X Y, QIU J M, et al. Insight into the interface engineering of a SnO2/FAPbI3 perovskite using lead halide as an interlayer: a first-principles study[J]. The Journal of Physical Chemistry Letters, 2021, 12(46): 11330-11338. [33] FAN F R, LIU D Y, WU Y F, et al. Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes[J]. Journal of the American Chemical Society, 2008, 130(22): 6949-6951. [34] LIU J, ZHANG J T. Nanointerface chemistry: lattice-mismatch-directed synthesis and application of hybrid nanocrystals[J]. Chemical Reviews, 2020, 120(4): 2123-2170. [35] WANG L F, SI F J, TANG F L, et al. Electronic and optical properties of SnO2 (110)/MAPbI3 (100) interface by first-principles calculations[J]. Materials Research Express, 2018, 6(2): 026312. [36] SI F J, TANG F L, XUE H T. Electronic properties of NiO (1 1 0)/CH3NH3PbI3 (1 0 0) interface from the first-principles calculations[J]. Chemical Physics Letters, 2018, 707: 133-139. [37] HU W, SI F J, XUE H T, et al. Electronic and optical properties of the SnO2/CsPbI3 interface: using first principles calculations[J]. Catalysis Today, 2021, 374: 208-213. [38] CHENG Y W, TANG F L, XUE H T, et al. First-principles study on electronic properties and lattice structures of WZ-ZnO/CdS interface[J]. Materials Science in Semiconductor Processing, 2016, 45: 9-16. [39] HU J, ZHENG S L, ZHAO X, et al. A theoretical study on the surface and interfacial properties of Ni3P for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2018, 6(17): 7827-7834. [40] LI C, XU Y, SHENG W, et al. A promising blue phosphorene/C2N van der Waals type-II heterojunction as a solar photocatalyst: a first-principles study[J]. Physical Chemistry Chemical Physics: PCCP, 2020, 22(2): 615-623. [41] HU W, AN J P, SI F J, et al. First-principles study of electronic properties of SnO2/CsPbI2Br interface[J]. Journal of Electronic Materials, 2021, 50(4): 2129-2136. |
| [1] | MO Qiuyan, ZHANG Song, JING Tao, WU Jiayin. First-Principles Study on the Adsorption of SO2 and CO on ReS2 Surface [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 107-114. |
| [2] | ZHANG Ningning, YU Haitao, LIU Yanyan, XUE Dan. Electronic Structure and Optical Property of 4d Transition Metal Doped Monolayer WS2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 77-84. |
| [3] | WANG Yunjie, HE Zhihao, DING Jiafu, SU Xin. Influence of Cations on the Structural Framework and the Origin of Birefringence in X2(PO4)2 (X=Ba, Pb) and XPO4 (X=Y, Bi) [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 85-94. |
| [4] | DING Jiafu, HE Zhihao, WANG Yunjie, SU Xin. First-Principles Study on the Regulation of Optical Properties of Gallium, Indium, and Thallium Phosphates Through Sulfur Substitution [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 95-106. |
| [5] | ZHENG Quan, LIU Xuechao, WANG Hao, ZHU Xinfeng, PAN Xiuhong, CHEN Kun, DENG Weijie, TANG Meibo, XU Hao, WU Honghui, JIN Min. Effect of Aluminum Doping on the Crystal Structure and Properties of Indium Selenide Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1528-1535. |
| [6] | JIAO Sihui, WU Hongping, YU Hongwei. CsBa2ScB8O16: the First Rare-Earth Borate Simultaneously Containing Zero-Dimensional [B3O6] Units and One-Dimensional B—O Chains [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1550-1559. |
| [7] | MO Qiuyan, OU Manlin, ZHANG Song, JING Tao, WU Jiayin. First-Principles Study on the Effect of VI Group Elements Modification on the Electronic Properties of Two-Dimensional AlN [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1620-1628. |
| [8] | SUN Liang, ZHANG Yu, WANG Qun. Electronic Structure and Magnetic Properties of the Bulk and (001) Surface of Heusler Alloy Mn2LiGe [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1378-1385. |
| [9] | LIU Xiaoying, HUANG Haishen, SUN Li, PAN Mengmei, SHANG Zhenzhen. First-Principles Study on the Electronic and Magnetic Properties of MXene 2D Material CrVCF2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1386-1393. |
| [10] | DONG Yujuan, LIU Zhaojiang, ZHU Qirui. Preparation of Yellow-Emitting Pure Zn3V2O8 Phosphors and Its Optical Properties [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1416-1421. |
| [11] | LING Hao, XU Le, CHEN Sixian, TANG Yuanzhi, SUN Haibin, GUO Xue, FENG Yurun, HU Qiangqiang. Growth and Optical Properties of Large Size CsCu2I3 Single Crystal by Solution Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1121-1126. |
| [12] | WU Shiting, YU Chunyan, FANG Jiaqing, XU Yang, ZHAI Guangmei. Intermediate Shell Structure Regulation and Optical Properties of ZnSe Based Blue Quantum Dots [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1160-1169. |
| [13] | LENG Haoning, SUN Xiaoxiao, LIU Fengju, ZHAO Xiangmin. First-Principles Study on Phase Transition Behavior of LiVO3 under High Pressure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1222-1230. |
| [14] | HE Zhihao, GOU Jie, WANG Yunjie, QI Yajie, DING Jiafu, ZHANG Bo, ZHAO Xingsheng, PEI Yizhen, HOU Shuyu, SU Xin. First-Principles Study on Electronic Structure and Optical Properties of Zn-Doped Boron Nitride [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1249-1256. |
| [15] | ZHANG Bo, WANG Yunjie, QI Yajie, DING Jiafu, HE Zhihao, SU Xin. First Principles Study on the Structure-Property Relationship of Alkali Metal Molybdates [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 999-1007. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS