[1] LOPES LIMA K A, RIBEIRO L A. A DFT study on the mechanical, electronic, thermodynamic, and optical properties of GaN and AlN counterparts of biphenylene network[J]. Materials Today Communications, 2023, 37: 107183. [2] BICKERMANN M, EPELBAUM B M, FILIP O, et al. UV transparent single-crystalline bulk AlN substrates[J]. Physica Status Solidi C, 2010, 7(1): 21-24. [3] KNEISSL M, YANG Z H, TEEPE M, et al. Ultraviolet semiconductor laser diodes on bulk AlN[J]. Journal of Applied Physics, 2007, 101(12): 123103-123103-5. [4] ZHENG W, HUANG F, ZHENG R S, et al. Low-dimensional structure vacuum-ultraviolet-sensitive (λ<200 nm) photodetector with fast-response speed based on high-quality AlN micro/nanowire[J]. Advanced Materials, 2015, 27(26): 3921-3927. [5] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [6] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438: 197-200. [7] HAN W H, KIM S, LEE I H, et al. Prediction of green phosphorus with tunable direct band gap and high mobility[J]. The Journal of Physical Chemistry Letters, 2017, 8(18): 4627-4632. [8] SHI Z Q, LI H P, XUE C L, et al. Tuning the electronic structure of an α-antimonene monolayer through interface engineering[J]. Nano Letters, 2020, 20(11): 8408-8414. [9] XU L, YANG M, WANG S J, et al. Electronic and optical properties of the monolayer group-IV monochalcogenides MX (M = Ge, Sn; X = S, Se, Te)[J]. Physical Review B, 2017, 95: 235434. [10] KHOA D Q, NGUYEN C V, PHUC H V, et al. Effect of strains on electronic and optical properties of monolayer SnS: ab-initio study[J]. Physica B: Condensed Matter, 2018, 545: 255-261. [11] TIAN H, FAN C, LIU G Z, et al. Ultrafast broadband photodetector based on SnS synthesized by hydrothermal method[J]. Applied Surface Science, 2019, 487: 1043-1048. [12] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. [13] ZHONG T T, ZENG L N, LI Z J, et al. Research progress and applications of 2D antimonene[J]. Applied Sciences, 2022, 13(1): 35. [14] ZHU Z, TOMÁNEK D. Semiconducting layered blue phosphorus: a computational study[J]. Physical Review Letters, 2014, 112(17): 176802. [15] ZHANG J L, ZHAO S T, HAN C, et al. Epitaxial growth of single layer blue phosphorus: a new phase of two-dimensional phosphorus[J]. Nano Letters, 2016, 16(8): 4903-4908. [16] NIU T C, ZHOU W H, ZHOU D C, et al. Modulating epitaxial atomic structure of antimonene through interface design[J]. Advanced Materials, 2019, 31(29): e1902606. [17] KRIPALANI D R, KISTANOV A A, CAI Y Q, et al. Strain engineering of antimonene by a first-principles study: mechanical and electronic properties[J]. Physical Review B, 2018, 98(8): 085410. [18] TAN C L, CAO X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331. [19] TSIPAS P, KASSAVETIS S, TSOUTSOU D, et al. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)[J]. Applied Physics Letters, 2013, 103(25): 251605. [20] JAVAHERI S, BABAEIPOUR M, BOOCHANI A, et al. Electronic and optical properties of V doped AlN nanosheet: DFT calculations[J]. Chinese Journal of Physics, 2018, 56(6): 2698-2709. [21] 邹 江, 李 平, 谢 泉. (La, Y)掺杂AlN的电子结构和光学性质的第一性原理研究[J]. 人工晶体学报, 2021, 50(11): 2036-2044. ZOU J, LI P, XIE Q. First-principles study on electronic structure and optical properties of (La, Y)-doped AlN[J]. Journal of Synthetic Crystals, 2021, 50(11): 2036-2044 (in Chinese). [22] KADHIM M M, ABED Z T, RAYID R, et al. The Cd-decorated AlN nanotube as a potential chemical sensor for chloropicrin: DFT studies[J]. Computational and Theoretical Chemistry, 2023, 1220: 113982. [23] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186. [24] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. [25] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [26] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799. [27] WANG V, XU N, LIU J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033. [28] MOMMA K, IZUMI F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data[J]. Journal of Applied Crystallography, 2011, 44(6): 1272-1276. [29] XIAO G, WANG L L, RONG Q Y, et al. A comparative study on magnetic properties of Mo doped AlN, GaN and InN monolayers from first-principles[J]. Physica B: Condensed Matter, 2017, 524: 47-52. [30] SHEN F G, WANG M, SU J, et al. Ab initio study on electronic structure and magnetism of AlN and InSe monolayer[J]. Physica B: Condensed Matter, 2024, 674: 415553. |