Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (2): 177-189.DOI: 10.16553/j.cnki.issn1000-985x.2024.0285
• Crystal Growth, Doping and Defects • Previous Articles Next Articles
ZHA Xianhu, WAN Yuxi, ZHANG Daohua
Received:
2024-11-12
Published:
2025-03-04
[1] BALIGA B J. Semiconductors for high-voltage, vertical channel field-effect transistors[J]. Journal of Applied Physics, 1982, 53(3): 1759-1764. [2] BALIGA B J. Power semiconductor device figure of merit for high-frequency applications[J]. IEEE Electron Device Letters, 1989, 10(10): 455-457. [3] JOHNSON E. Physical limitations on frequency and power parameters of transistors[C]//1958 IRE International Convention Record. March 21-25, 1966, New York, NY, USA. IEEE, 1966: 27-34. [4] TSAO J Y, CHOWDHURY S, HOLLIS M A, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges[J]. Advanced Electronic Materials, 2018, 4(1): 1600501. [5] AIDA H, NISHIGUCHI K, TAKEDA H, et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method[J]. Japanese Journal of Applied Physics, 2008, 47(11R): 8506. [6] HIGASHIWAKI M, SASAKI K, MURAKAMI H, et al. Recent progress in Ga2O3 power devices[J]. Semiconductor Science and Technology, 2016, 31(3): 034001. [7] GALAZKA Z, UECKER R, KLIMM D, et al. Scaling-up of bulk β-Ga2O3single crystals by the Czochralski method[J]. ECS Journal of Solid State Science and Technology, 2016, 6(2): Q3007-Q3011. [8] KURAMATA A, KOSHI K, WATANABE S, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202A2. [9] HOSHIKAWA K, OHBA E, KOBAYASHI T, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air[J]. Journal of Crystal Growth, 2016, 447: 36-41. [10] MENG L Y, FENG Z X, BHUIYAN A F M A U, et al. High-mobility MOCVD β-Ga2O3 epitaxy with fast growth rate using trimethylgallium[J]. Crystal Growth & Design, 2022, 22(6): 3896-3904. [11] NOMURA K, GOTO K, TOGASHI R, et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy[J]. Journal of Crystal Growth, 2014, 405: 19-22. [12] SASAKI K, HIGASHIWAKI M, KURAMATA A, et al. MBE grown Ga2O3 and its power device applications[J]. Journal of Crystal Growth, 2013, 378: 591-595. [13] SASAKI K. Prospects for β-Ga2O3: now and into the future[J]. Applied Physics Express, 2024, 17(9): 090101. [14] TADJER M J. Cheap ultra-wide bandgap power electronics? Gallium oxide may hold the answer[J]. The Electrochemical Society Interface, 2018, 27(4): 49-52. [15] SHEORAN H, KUMAR V, SINGH R. A comprehensive review on recent developments in ohmic and Schottky contacts on Ga2O3 for device applications[J]. ACS Applied Electronic Materials, 2022, 4(6): 2589-2628. [16] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [17] YUAN Y, HAO W B, MU W X, et al. Toward emerging gallium oxide semiconductors: a roadmap[J]. Fundamental Research, 2021, 1(6): 697-716. [18] MAIMON O, LI Q L. Progress in gallium oxide field-effect transistors for high-power and RF applications[J]. Materials, 2023, 16(24): 7693. [19] ROY R, HILL V G, OSBORN E F. Polymorphism of Ga2O3 and the system Ga2O3—H2O[J]. Journal of the American Chemical Society, 1952, 74(3): 719-722. [20] CHIKOIDZE E, FELLOUS A, PEREZ-TOMAS A, et al. P-type β-gallium oxide: a new perspective for power and optoelectronic devices[J]. Materials Today Physics, 2017, 3: 118-126. [21] WONG M H, SASAKI K, KURAMATA A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V[J]. IEEE Electron Device Letters, 2016, 37(2): 212-215. [22] SASAKI K, HIGASHIWAKI M, KURAMATA A, et al. Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts[J]. Applied Physics Express, 2013, 6(8): 086502. [23] MOSER N, MCCANDLESS J, CRESPO A, et al. Ge-doped β-Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2017, 38(6): 775-778. [24] GREEN A J, CHABAK K D, HELLER E R, et al. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped: Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2016, 37(7): 902-905. [25] ZHOU H, SI M W, ALGHAMDI S, et al. High-performance depletion/enhancement-ode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm[J]. IEEE Electron Device Letters, 2017, 38(1): 103-106. [26] OISHI T, KOGA Y, HARADA K, et al. High-mobility β-Ga2O3(201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact[J]. Applied Physics Express, 2015, 8(3): 031101. [27] GELLER S. Crystal structure of β-Ga2O3[J]. The Journal of Chemical Physics, 1960, 33(3): 676-684. [28] PEELAERS H, van de WALLE C G. Brillouin zone and band structure of β-Ga2O3[J]. Physica Status Solidi (b), 2015, 252(4): 828-832. [29] ZHA X H, WAN Y X, LI S, et al. Rhodium-alloyed beta gallium oxide materials: new type ternary ultra-wide bandgap semiconductors[J]. Advanced Electronic Materials, 2025, 11(1): 2400547. [30] PONCE, S, GIUSTINO F. Structural, electronic, elastic, power, and transport properties of β-Ga2O3 from first principles[J]. Physical Review Research, 2020, 2(3): 033102. [31] JANOWITZ C, SCHERER V, MOHAMED M, et al. Experimental electronic structure of In2O3 and Ga2O3[J]. New Journal of Physics, 2011, 13(8): 085014. [32] MOHAMED M, JANOWITZ C, UNGER I, et al. The electronic structure of β-Ga2O3[J]. Applied Physics Letters, 2010, 97(21): 211903. [33] CAI X F, SABINO F P, JANOTTI A, et al. Approach to achieving a p-type transparent conducting oxide: doping of bismuth-alloyed Ga2O3 with a strongly correlated band edge state[J]. Physical Review B, 2021, 103(11): 115205. [34] KAWAZOE H, YASUKAWA M, HYODO H, et al. P-type electrical conduction in transparent thin films of CuAlO2[J]. Nature, 1997, 389(6654): 939-942. [35] IRMSCHER K, GALAZKA Z, PIETSCH M, et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Applied Physics, 2011, 110(6): 063720. [36] KANANEN B E, HALLIBURTON L E, STEVENS K T, et al. Gallium vacancies in β-Ga2O3 crystals[J]. Applied Physics Letters, 2017, 110(20): 202104. [37] TUOMISTO F, MAKKONEN I. Defect identification in semiconductors with positron annihilation: experiment and theory[J]. Reviews of Modern Physics, 2013, 85(4): 1583-1631. [38] INGEBRIGTSEN, VARLEY, KUZNETSOV A Y, et al. Iron and intrinsic deep level states in Ga2O3[J]. Applied Physics Letters, 2018, 112(4): 42104-1-042104-5. [39] WANG Y S, DICKENS P T, VARLEY J B, et al. Incident wavelength and polarization dependence of spectral shifts in β-Ga2O3 UV photoluminescence[J]. Scientific Reports, 2018, 8(1): 18075. [40] HUYNH T T, LEM L L C, KURAMATA A, et al. Kinetics of charge carrier recombination in β-Ga2O3 crystals[J]. Physical Review Materials, 2018, 2(10): 105203. [41] VAN DE WALLE C G, STAMPFL C, NEUGEBAUER J. Theory of doping and defects in Ⅲ-Ⅴ nitrides[J]. Journal of Crystal Growth, 1998, 189: 505-510. [42] VAN DE WALLE C G, NEUGEBAUER J. First-principles calculations for defects and impurities: applications to Ⅲ-nitrides[J]. Journal of Applied Physics, 2004, 95(8): 3851-3879. [43] DE WALLE CG V, LAKS D B, NEUMARK G F, et al. First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe[J]. Physical Review B, 1993, 47(15): 9425-9434. [44] RINCÓN C, MÁRQUEZ R. Defect physics of the CuInSe2 chalcopyrite semiconductor[J]. Journal of Physics and Chemistry of Solids, 1999, 60(11): 1865-1873. [45] WEI S H, ZHANG S B. Chemical trends of defect formation and doping limit in Ⅱ-Ⅵ semiconductors: the case of CdTe[J]. Physical Review B, 2002, 66(15): 155211. [46] FREYSOLDT C, GRABOWSKI B, HICKEL T, et al. First-principles calculations for point defects in solids[J]. Reviews of Modern Physics, 2014, 86(1): 253-305. [47] HUANG M L, ZHENG Z N, DAI Z X, et al. DASP: defect and dopant ab-initio simulation package[J]. Journal of Semiconductors, 2022, 43(4): 042101. [48] KIM S, HOOD S N, PARK J S, et al. Quick-start guide for first-principles modelling of point defects in crystalline materials[J]. Journal of Physics: Energy, 2020, 2(3): 036001. [49] LYONS J L. A survey of acceptor dopants for β-Ga2O3[J]. Semiconductor Science and Technology, 2018, 33(5): 05LT02. [50] KYRTSOS A, MATSUBARA M, BELLOTTI E. On the feasibility of p-type Ga2O3[J]. Applied Physics Letters, 2018, 112(3): 032108. [51] VAN DE WALLE C G, NEUGEBAUER J. First-principles surface phase diagram for hydrogen on GaN surfaces[J]. Physical Review Letters, 2002, 88(6): 066103. [52] REUTER K, SCHEFFLER M. First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions[J]. Physical Review Letters, 2003, 90(4): 046103. [53] JOHNSON J M, CHEN Z, VARLEY J B, et al. Unusual formation of point-defect complexes in the ultrawide-band-gap semiconductor β-Ga2O3[J]. Physical Review X, 2019, 9(4): 041027. [54] WEISER P, STAVOLA M, FOWLER W B, et al. Structure and vibrational properties of the dominant O-H center in β-Ga2O3[J]. Applied Physics Letters, 2018, 112(23): 232104. [55] VARLEY J B, PEELAERS H, JANOTTI A, et al. Hydrogenated cation vacancies in semiconducting oxides[J]. Journal of Physics Condensed Matter, 2011, 23(33): 334212. [56] PEELAERS H, LYONS J L, VARLEY J B, et al. Deep acceptors and their diffusion in Ga2O3[J]. APL Materials, 2019, 7(2): 022519. [57] NEAL A T, MOU S, RAFIQUE S, et al. Donors and deep acceptors in β-Ga2O3[J]. Applied Physics Letters, 2018, 113(6): 062101. [58] VARLEY J B, JANOTTI A, FRANCHINI C, et al. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides[J]. Physical Review B, 2012, 85(8): 081109. [59] GAKE T, KUMAGAI Y, OBA F. First-principles study of self-trapped holes and acceptor impurities in Ga2O3 polymorphs[J]. Physical Review Materials, 2019, 3(4): 044603. [60] KANANEN B E, HALLIBURTON L E, SCHERRER E M, et al. Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals[J]. Applied Physics Letters, 2017, 111(7): 072102. [61] TERSOFF J. Enhanced solubility of impurities and enhanced diffusion near crystal surfaces[J]. Physical Review Letters, 1995, 74(25): 5080-5083. [62] LIU L L, LI M K, YU D Q, et al. Fabrication and characteristics of N-doped β-Ga2O3 nanowires[J]. Applied Physics A, 2010, 98(4): 831-835. [63] FENG Q J, LIU J Y, YANG Y Q, et al. Catalytic growth and characterization of single crystalline Zn doped p-type β-Ga2O3 nanowires[J]. Journal of Alloys and Compounds, 2016, 687: 964-968. [64] LI Q, DU B D, GAO J Y, et al. Liquid metal gallium-based printing of Cu-doped p-type Ga2O3 semiconductor and Ga2O3 homojunction diodes[J]. Applied Physics Reviews, 2023, 10(1): 011402. [65] CHIKOIDZE E, SARTEL C, MOHAMED H, et al. Enhancing the intrinsic p-type conductivity of the ultra-wide bandgap Ga2O3 semiconductor[J]. Journal of Materials Chemistry C, 2019, 7(33): 10231-10239. [66] WU Z Y, JIANG Z X, MA C C, et al. Energy-driven multi-step structural phase transition mechanism to achieve high-quality p-type nitrogen-doped β-Ga2O3 films[J]. Materials Today Physics, 2021, 17: 100356. [67] MA C, WU Z, ZHANG H, et al. P-type nitrogen-doped beta-Ga2O3: the role of stable shallow acceptor NO-VGa complexes[J]. Physical Chemistry Chemical Physics, 2023, 25(19): 13766-13771. [68] YAN C Y, SU J, WANG Y F, et al. Reducing the acceptor levels of p-type β-Ga2O3 by (metal, N) co-doping approach[J]. Journal of Alloys and Compounds, 2021, 854: 157247. [69] HORNG R H, TSAI X Y, TARNTAIR F G, et al. P-type conductive Ga2O3 epilayers grown on sapphire substrate by phosphorus-ion implantation technology[J]. Materials Today Advances, 2023, 20: 100436. [70] MIZOGUCHI H, HIRANO M, FUJITSU S, et al. ZnRh2O4: a p-type semiconducting oxide with a valence band composed of a low spin state of Rh3+ in a 4d6 configuration[J]. Applied Physics Letters, 2002, 80(7): 1207-1209. [71] KANEKO K, FUJITA S, HITORA T. A power device material of corundum-structured α-Ga2O3fabricated by MIST EPITAXY? technique[J]. Japanese Journal of Applied Physics, 2018, 57(2S2): 02CB18. [72] 丰田自动车株式会社. 在基材上形成含铋氧化镓系半导体膜的方法、含铋氧化镓系半导体膜及半导体元件:CN 114807869B[P]. 2024-03-12. Toyota Jidosha Kabushiki Kaisha. Method of forming bismuth-containing gallium oxide-based semiconductor film on base material, bismuth-containing gallium oxide-based semiconductor film, and bismuth-containing gallium oxide-based semiconductor component; China, CN 114807869B[P]. 2024-03-12. [73] WEI D, MA Y Q, GUO G F, et al. Effect of alloying metal elements on the valence band of β-Ga2O3: a first-principles study[J]. The Journal of Physical Chemistry Letters, 2025, 16(2): 587-595. [74] ZHA X H, LI S, WAN Y X, et al. Engineering the valence band of β-Ga2O3 via alloying transition metals: a first-principles study[J]. SSRN, 2024, DOI: 10.2139/ssrn.4973092. [75] SLATER J C. Atomic radii in crystals[J]. Journal of Chemical Physics, 1964, 41(10): 3199-3204. [76] ZHAI H C, LIU C X, WU Z Y, et al. Full β-Ga2O3 films-based p-n homojunction[J]. Science China Materials, 2024, 67(3): 898-905. [77] ZHAO Y, WU Z Y, LIU C X, et al. β-Ga2O3 van der Waals p-n homojunction[J]. Materials Today Physics, 2024, 44: 101447. [78] HUANG C Y, TSAI X Y, TARNTAIR F G, et al. Heteroepitaxially grown homojunction gallium oxide PN diodes using ion implantation technologies[J]. Materials Today Advances, 2024, 22: 100499. [79] KOKUBUN Y, KUBO S, NAKAGOMI S. All-oxide p-n heterojunction diodes comprising p-type NiO and n-type β-Ga2O3[J]. Applied Physics Express, 2016, 9(9): 091101. [80] WATAHIKI T, YUDA Y, FURUKAWA A, et al. Heterojunction p-Cu2O/n-Ga2O3 diode with high breakdown voltage[J]. Applied Physics Letters, 2017, 111(22): 222104. [81] GHOSH S, BARAL M, KAMPARATH R, et al. Epitaxial growth and interface band alignment studies of all oxide α-Cr2O3/β-Ga2O3 p-n heterojunction[J]. Applied Physics Letters, 2019, 115(6): 061602. [82] GALLAGHER J C, KOEHLER A D, TADJER M J, et al. Demonstration of CuI as a P-N heterojunction to β-Ga2O3[J]. Applied Physics Express, 2019, 12(10): 104005. [83] LI B C, WANG Y B, LUO Z D, et al. Gallium oxide (Ga2O3) heterogeneous and heterojunction power devices[J]. Fundamental Research, 2023. [84] HAO W B, HE Q M, ZHOU K, et al. Low defect density and small I-V curve hysteresis in NiO/β-Ga2O3 pn diode with a high PFOM of 0.65 GW/cm2[J]. Applied Physics Letters, 2021, 118(4): 043501. [85] GONG H H, CHEN X H, XU Y, et al. A 1.86-kV double-layered NiO/β-Ga2O3 vertical p-n heterojunction diode[J]. Applied Physics Letters, 2020, 117(2): 022104. [86] HERATH MUDIYANSELAGE D, DA B C, ADIVARAHAN J, et al. β-Ga2O3-based heterostructures and heterojunctions for power electronics: a review of the recent advances[J]. Electronics, 2024, 13(7): 1234. |
[1] | WANG Kaikai, DU Song, XU Hao, LONG Hao. Performance Optimization Study of Ga2O3/NiOx Schottky Barrier Diodes [J]. Journal of Synthetic Crystals, 2025, 54(2): 337-347. |
[2] | YANG Xiaolong, TANG Huili, ZHANG Chaoyi, SUN Peng, HUANG Lin, CHEN Long, XU Jun, LIU Bo. Growth and Spectral Properties of Bi-Doped β-Ga2O3 Single Crystal by Optical Floating Zone Method [J]. Journal of Synthetic Crystals, 2025, 54(2): 202-211. |
[3] | QU Minmin, YU Jiangang, LI Ziwei, LI Wangwang, LEI Cheng, LI Tengteng, LI Fengchao, LIANG Ting, JIA Renxu. Simulation Study on Electrical Performance of a New Composite Terminal Gallium Oxide Schottky Diode [J]. Journal of Synthetic Crystals, 2025, 54(2): 348-357. |
[4] | XIE Yinfei, HE Yang, LIU Weiye, XU Wenhui, YOU Tiangui, OU Xin, GUO Huaixin, SUN Huarui. Recent Progress on Thermal Management of Ultrawide Bandgap Gallium Oxide Power Devices [J]. Journal of Synthetic Crystals, 2025, 54(2): 290-311. |
[5] | HUANG Dongyang, HUANG Haotian, PAN Mingyan, XU Ziqian, JIA Ning, QI Hongji. Growth and Properties of β-Ga2O3 Single Crystal by Vertical Bridgman Method [J]. Journal of Synthetic Crystals, 2025, 54(2): 190-196. |
[6] | ZHANG Ziqi, YANG Zhenni, KUANG Siliang, WEI Shenglong, XU Wenjing, CHEN Duanyang, QI Hongji, ZHANG Hongliang. Electronic Transport Properties of Sn-Doped β-Ga2O3 (010) Thin Films Grown by MBE Homoepitaxial Growth [J]. Journal of Synthetic Crystals, 2025, 54(2): 244-254. |
[7] | DU Tong, FU Junjie, WANG Zishi, DI Jing, TAO Chunlei, ZHANG Hezhi, ZHANG Qi, HU Xibing, LIANG Hongwei. Analysis of High Temperature Current Transport Mechanism of β-Ga2O3 Based Metal-Semiconductor-Metal Type Solar-Blind Ultraviolet Photodetector [J]. Journal of Synthetic Crystals, 2025, 54(2): 319-328. |
[8] | WEI Yuxi, MA Xinyu, JIANG Zejun, WEI Jie, LUO Xiaorong. Research Progress of Ultra-Wide Bandgap β-Ga2O3 Power Devices on Novel Structures and Electro-Thermal Characteristics [J]. Journal of Synthetic Crystals, 2025, 54(2): 263-275. |
[9] | DONG Zengyin, WANG Yingmin, ZHANG Song, LI He, SUN Kewei, CHENG Hongjuan, LIU Chao. Homoepitaxial Growth of Gallium Oxide Thick Films by HVPE Method [J]. Journal of Synthetic Crystals, 2025, 54(2): 227-232. |
[10] | ZHANG Ningning, YU Haitao, LIU Yanyan, XUE Dan. Electronic Structure and Optical Property of 4d Transition Metal Doped Monolayer WS2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 77-84. |
[11] | WANG Yunjie, HE Zhihao, DING Jiafu, SU Xin. Influence of Cations on the Structural Framework and the Origin of Birefringence in X2(PO4)2 (X=Ba, Pb) and XPO4 (X=Y, Bi) [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 85-94. |
[12] | DING Jiafu, HE Zhihao, WANG Yunjie, SU Xin. First-Principles Study on the Regulation of Optical Properties of Gallium, Indium, and Thallium Phosphates Through Sulfur Substitution [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 95-106. |
[13] | MO Qiuyan, OU Manlin, ZHANG Song, JING Tao, WU Jiayin. First-Principles Study on the Effect of VI Group Elements Modification on the Electronic Properties of Two-Dimensional AlN [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1620-1628. |
[14] | ZHONG Qiongli, WANG Xu, MA Kui, YANG Fashun. Effect of Al Doping on the Optical Properties of β-Ga2O3 Thin Films [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1352-1360. |
[15] | HE Xiaomin, TANG Peizheng, LIU Ruoqi, SONG Xinyang, HU Jichao, SU Han. Simulation Study on Frequency Characteristics of AlN/β-Ga2O3 HEMT [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1361-1368. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||