[1] CHING W Y, MO Y X, ARYAL S, et al. Intrinsic mechanical properties of 20 MAX-phase compounds[J]. Journal of the American Ceramic Society, 2013, 96(7): 2292-2297. [2] BARSOUM M, EL-RAGHY T. The MAX phases: unique new carbide and nitride materials[J]. American Scientist, 2001, 89(4): 334. [3] 田宝娜,应国兵,王鹏举,等.三元纳米层状Ta2AlC原位合成机制[J].人工晶体学报,2015,44(7):1773-1777. TIAN B N, YING G B, WANG P J, et al. In-situ synthesis mechanism of nano-layered ternary Ta2AlC[J]. Journal of Synthetic Crystals, 2015, 44(7): 1773-1777(in Chinese). [4] BARSOUM M W. The MN+1AXN phases: a new class of solids[J]. Progress in Solid State Chemistry, 2000, 28(1/2/3/4): 201-281. [5] 吕玲秀,徐微微,朱春城.基于第一性原理研究Ta2AlC的电子结构和光学性质[J].人工晶体学报,2016,45(2):520-524. LV L X, XU W W, ZHU C C. First-principle study of electronic structure and optical properties of Ta2AlC[J]. Journal of Synthetic Crystals, 2016, 45(2): 520-524(in Chinese). [6] 李 辉,罗至利,刘 哲,等.高压对Ti2AlX(X=C,N)结构、弹性和电子性质的影响[J].人工晶体学报,2016,45(10):2406-2411. LI H, LUO Z L, LIU Z, et al. Effect of high pressure on the structure, elastic and electronic properties of Ti2AlX(X=C, N)[J]. Journal of Synthetic Crystals, 2016, 45(10): 2406-2411(in Chinese). [7] 刘 哲,李 辉,赵 鹏,等.Ti5Al2C3与Ti2AlC、Ti3AlC2结构、弹性和电子性质的第一性原理对比研究[J].人工晶体学报,2019,48(5):834-839+845. LIU Z, LI H, ZHAO P, et al. First-principles study on the structure, elastic and electronic properties of Ti5Al2C3 comparison with Ti2AlC and Ti3AlC2[J]. Journal of Synthetic Crystals, 2019, 48(5): 834-839+845(in Chinese). [8] 李 辉,罗至利,刘 哲,等.Ti3AC2(A=Si,Al)结构、弹性和电子性质的第一性原理研究[J].硅酸盐通报,2016,35(8):2341-2345+2352. LI H, LUO Z L, LIU Z, et al. First-principles study on the structural, elastic and electronic properties of Ti3AC2(A=Si, Al)[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(8): 2341-2345+2352(in Chinese). [9] HETTINGER J D, LOFLAND S E, FINKEL P, et al. Electrical transport, thermal transport, and elastic properties of M2AlC(M=Ti, Cr, Nb, and V)[J]. Physical Review B, 2005, 72(11): 115120. [10] RADOVIC M, BARSOUM M W, GANGULY A, et al. On the elastic properties and mechanical damping of Ti3SiC2, Ti3GeC2, Ti3Si0.5Al0.5C2 and Ti2AlC in the 300-1573 K temperature range[J]. Acta Materialia, 2006, 54(10): 2757-2767. [11] 胡洁琼,谢 明,陈家林,等.Ti3AC2相(A=Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究[J].物理学报,2017,66(5):270-279. HU J Q, XIE M, CHEN J L, et al. First principles study of electronic and elastic properties of Ti3AC2(A=Si, Sn, Al, Ge) phases[J]. Acta Physica Sinica, 2017, 66(5): 270-279(in Chinese). [12] SUN Z M. Progress in research and development on MAX phases: a family of layered ternary compounds[J]. International Materials Reviews, 2011, 56(3): 143-166. [13] PIETZKA M A, SCHUSTER J C. Summary of constitutional data on the aluminum-carbon-titanium system[J]. Journal of Phase Equilibria, 1994, 15(4): 392-400. [14] 李 勉,李友兵,罗 侃,等.基于A位元素置换策略合成新型MAX相材料Ti3ZnC2[J].无机材料学报,2019,34(1):60-64. LI M, LI Y B, LUO K, et al. Synthesis of novel MAX phase Ti3ZnC2 via A-site-element-substitution approach[J]. Journal of Inorganic Materials, 2019, 34(1): 60-64(in Chinese). [15] FENG R, LIAW P K, GAO M C, et al. First-principles prediction of high-entropy-alloy stability[J]. Npj Computational Materials, 2017, 3: 50. [16] 王雪飞,马静婕,焦照勇,等.Ti3(SnxAl1-x)C2固溶体电学、力学和热学性能的理论研究[J].物理学报,2016,65(20):207-215. WANG X F, MA J J, JIAO Z Y, et al. Theoretical studies of electronic, mechanical and thermal properties of Ti3(SnxAl1-x)C2 solid solutions[J]. Acta Physica Sinica, 2016, 65(20): 207-215(in Chinese). [17] SOKOL M, NATU V, KOTA S, et al. On the chemical diversity of the MAX phases[J]. Trends in Chemistry, 2019, 1(2): 210-223. [18] LI M, LU J, LUO K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society, 2019, 141(11): 4730-4737. [19] ARYAL S, SAKIDJA R, BARSOUM M W, et al. A genomic approach to the stability, elastic, and electronic properties of the MAX phases[J]. Physica Status Solidi (b), 2014, 251(8): 1480-1497. [20] KRESSE G. Ab initio molecular dynamics for liquid metals[J]. Journal of Non-Crystalline Solids, 1995, 192/193: 222-229. [21] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, Condensed Matter, 1992, 46(11): 6671-6687. [22] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [23] PACK J D, MONKHORST H J. “Special points for Brillouin-zone integrations”: a reply[J]. Physical Review B, 1977, 16(4): 1748-1749. [24] MOMMA K, IZUMI F. VESTA: a three-dimensional visualization system for electronic and structural analysis[J]. Journal of Applied Crystallography, 2008, 41(3): 653-658. [25] TOGO A, CHAPUT L, TANAKA I, et al. First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2[J]. Physical Review B, 2010, 81(17): 174301. [26] BORN M. On the stability of crystal lattices. I[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1940, 36(2): 160-172. [27] STEINLE-NEUMANN G, STIXRUDE L, COHEN R E. First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure[J]. Physical Review B, 1999, 60(2): 791-799. [28] PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823-843. |