[1] 杨祥龙, 杨 昆, 陈秀芳, 等. 高质量N型SiC单晶生长及其器件应用[J]. 人工晶体学报, 2015, 44(6): 1427-1431. YANG X L, YANG K, CHEN X F, et al. Growth and device application of high quality N-type SiC single crystals[J]. Journal of Synthetic Crystals, 2015, 44(6): 1427-1431 (in Chinese). [2] WENG M H, CLARK D T, WRIGHT S N, et al. Recent advance in high manufacturing readiness level and high temperature CMOS mixed-signal integrated circuits on silicon carbide[J]. Semiconductor Science and Technology, 2017, 32(5): 054003. [3] 韩景瑞, 李锡光, 李咏梅, 等. 8英寸SiC晶圆制备与外延应用[J]. 人工晶体学报, 2024, 53(10): 1712-1719. HAN J R, LI X G, LI Y M, et al. Preparation and epitaxy application of 8 inch SiC wafers[J]. Journal of Synthetic Crystals, 2024, 53(10): 1712-1719 (in Chinese). [4] 杨祥龙, 陈秀芳, 谢雪健, 等. 8英寸导电型4H-SiC单晶的生长[J]. 人工晶体学报, 2022, 51(9/10): 1745-1748. YANG X L, CHEN X F, XIE X J, et al. Growth of 8 inch conductivity type 4H-SiC single crystals[J]. Journal of Synthetic Crystals, 2022, 51(9/10): 1745-1748 (in Chinese). [5] FRAJKOROVÁ F, HNATKO M, LENĎÉŠ Z, et al. Electrically conductive silicon carbide with the addition of TiNbC[J]. Journal of the European Ceramic Society, 2012, 32(10): 2513-2518. [6] HUANG H B, LU X Y, KRAFCZYK M. Numerical simulation of unsteady flows in Czochralski crystal growth by lattice Boltzmann methods[J]. International Journal of Heat and Mass Transfer, 2014, 74: 156-163. [7] 何 超, 王英民, 李 斌, 等. SiC晶片加工技术现状与趋势[J]. 电子工业专用设备, 2016, 45(6): 1-6. HE C, WANG Y M, LI B, et al. Recent development and perspective of SiC wafer machining[J]. Equipment for Electronic Products Manufacturing, 2016, 45(6): 1-6 (in Chinese). [8] GILMAN J J. Electro-plastic effect in semiconductors[J]. Materials Science and Engineering: A, 2000, 287(2): 272-275. [9] 邓 亚, 张宇民, 周玉锋, 等. 碳化硅单晶材料残余应力检测技术研究进展[J]. 材料导报, 2019, 33(S2): 206-209. DENG Y, ZHANG Y M, ZHOU Y F, et al. Research progress on measurement of residual stress in SiC single crystal materials[J]. Materials Reports, 2019, 33(Supplement 2): 206-209 (in Chinese). [10] 邓 亚, 张宇民, 周玉锋. X射线衍射法测量碳化硅单晶的残余应力[J]. 力学学报, 2022, 54(1): 147-153. DENG Y, ZHANG Y M, ZHOU Y F. Measurement of residual stress in single-crystal sic by X-ray diffraction method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 147-153 (in Chinese). [11] 闫 帅, 林 彬, 陈经跃. 基于快速面探测方法的碳化硅表面残余应力测量[J]. 金刚石与磨料磨具工程, 2018, 38(6): 80-85. YAN S, LIN B, CHEN J Y. Surface residual stress measurement of silicon carbide based on fast surface detection method[J]. Diamond & Abrasives Engineering, 2018, 38(6): 80-85 (in Chinese). [12] KOZU T, YAMAGUCHI M, FUJITSUKA M, et al. Residual stress analysis of indentation on 4H-SiC by deep-ultraviolet excited Raman spectroscopy[J]. Materials Science Forum, 2015, 821/822/823: 233-236. [13] SAKAKIMA H, TAKAMOTO S, MURAKAMI Y, et al. Development of a method to evaluate the stress distribution in 4H-SiC power devices[J]. Japanese Journal of Applied Physics, 2018, 57(10): 106602. [14] NAKASHIMA S I, MITANI T, TOMOBE M, et al. Raman characterization of damaged layers of 4H-SiC induced by scratching[J]. AIP Advances, 2016, 6(1): 015207. [15] YAMAMOTO M, DEKI M, TAKAHASHI T, et al. Raman spectroscopic stress evaluation of femtosecond-laser-modified region inside 4H-SiC[J]. Applied Physics Express, 2010, 3(1): 016603. [16] 虞伟良. 硬度测试技术的新动态与发展趋势[J]. 理化检验(物理分册), 2003, 39(8): 401-405. YU W L. Study of the latest development and trend of hardness measurement technology[J]. Physical Testing and Chemical Analysis Part A Physical Testing, 2003, 39(8): 401-405 (in Chinese). [17] 卜家贺, 冯 露, 张 静. 残余应力及尺寸效应对纳米压痕力学性能的影响研究[J]. 应用力学学报, 2020, 37(6): 2325-2331. BU J H, FENG L, ZHANG J. Effect of residual stress and size effect on the mechanical properties of nanoindentation[J]. Chinese Journal of Applied Mechanics, 2020, 37(6): 2325-2331 (in Chinese). [18] GILMAN J J. Dislocation mobility in crystals[J]. Journal of Applied Physics, 1965, 36(10): 3195-3206. [19] PROKES S M, CAMMARATA R C. Novel defect-related properties of silicon[J]. Defect and Diffusion Forum, 2001, 200/201/202: 29-46. [20] STÖCKER H, ZSCHORNAK M, LEISEGANG T, et al. Electric field mediated switching of mechanical properties of strontium titanate at room temperature[J]. Crystal Research and Technology, 2010, 45(1): 13-17. [21] LI M Q, SHEN Y D, LUO K, et al. Harnessing dislocation motion using an electric field[J]. Nature Materials, 2023, 22(8): 958-963. [22] TIAN J Q, XIE X J, ZHAO L B, et al. Origins and characterization techniques of stress in SiC crystals: a review[J]. Progress in Crystal Growth and Characterization of Materials, 2024, 70(1): 100616. [23] OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1): 3-20. |