人工晶体学报 ›› 2025, Vol. 54 ›› Issue (2): 290-311.DOI: 10.16553/j.cnki.issn1000-985x.2024.0267
谢银飞1, 何阳1, 刘伟业1, 徐文慧2, 游天桂2, 欧欣2, 郭怀新3, 孙华锐1
收稿日期:
2024-11-01
出版日期:
2025-02-15
发布日期:
2025-03-04
通信作者:
孙华锐,博士,教授。E-mail:huarui.sun@hit.edu.cn;孙华锐,哈尔滨工业大学(深圳)教授、博士生导师,理学院副院长、物理学科主任。从事宽带隙半导体器件热可靠性、低维材料声子与光谱学等领域的研究,研究成果发表于Physical Review Letters、Nature Communications、Laser & Photonics Reviews、Small、Nano Research、Applied Physics Letters、IEEE Electron Device Letters、IEDM等国际期刊或会议,获广东省科技创新青年拔尖人才等奖励。
作者简介:
谢银飞(1997—),男,江西省人,博士研究生。E-mail:xieyinfei527@163.com
基金资助:
XIE Yinfei1, HE Yang1, LIU Weiye1, XU Wenhui2, YOU Tiangui2, OU Xin2, GUO Huaixin3, SUN Huarui1
Received:
2024-11-01
Online:
2025-02-15
Published:
2025-03-04
摘要: 氧化镓的低热导率是其功率器件发展的最大瓶颈,使其在高功率密度下产热时面临高效散热的巨大挑战。因此,开发全新的热管理和封装技术迫在眉睫。通过材料、器件和封装多层面的热管理来缓解自热引发的性能与可靠性问题成为关键。本文综述了超宽带隙(UWBG)氧化镓(β-Ga2O3)功率器件的热管理,针对相关挑战、潜在解决方案和研究机遇提出了观点。论文首先介绍了超宽带隙氧化镓的特性及其在电子器件领域的重要性,详细阐述了热管理在氧化镓器件中的关键意义。随后,从不同的热管理技术方面,包括衬底相关技术和结侧热管理技术等进行深入探讨,并分析了热管理对氧化镓器件电学性能的影响。最后,对氧化镓器件热管理的未来发展趋势进行展望,提出了“材料-器件-封装”电热协同设计、近结异质集成和新型外部封装等多维度的热管理策略,旨在唤起相关研究,加快超宽带隙氧化镓功率器件的开发和产业化进程。
中图分类号:
谢银飞, 何阳, 刘伟业, 徐文慧, 游天桂, 欧欣, 郭怀新, 孙华锐. 超宽带隙氧化镓功率器件热管理的研究进展[J]. 人工晶体学报, 2025, 54(2): 290-311.
XIE Yinfei, HE Yang, LIU Weiye, XU Wenhui, YOU Tiangui, OU Xin, GUO Huaixin, SUN Huarui. Recent Progress on Thermal Management of Ultrawide Bandgap Gallium Oxide Power Devices[J]. Journal of Synthetic Crystals, 2025, 54(2): 290-311.
[1] PARET P, FINEGAN D, NARUMANCHI S. Artificial intelligence for power electronics in electric vehicles: challenges and opportunities[J]. Journal of Electronic Packaging, 2023, 145(3): 034501. [2] ZHAO S, BLAABJERG F, WANG H. An overview of artificial intelligence applications for power electronics[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 4633-4658. [3] RODRIGUES E M G, GODINA R, POURESMAEIL E. Industrial applications of power electronics[J]. Electronics, 2020, 9(9): 1534. [4] CHAN C C, CHAU K T. An overview of power electronics in electric vehicles[J]. IEEE Transactions on Industrial Electronics, 1997, 44(1): 3-13. [5] LUTZ J, SCHEUERMANN U, SCHLANGENOTTO H, et al. Power semiconductor devices-key components for efficient electrical energy conversion systems[M]. Berling: Springer, Berling, Heidelberg, 2018: 1-20. [6] HUANG A. Power semiconductor devices for smart grid and renewable energy systems[J]. Proceedings of the IEEE, 2017, 105: 2019-2047. [7] 世界集成电路协会. 2024年全球半导体市场秋季预测报告[EB/OL]. (2024-09-18) [2024-10-09]. http://wicassociation.org/articles/101.html. WORLD INTEGRATED CIRCUIT ASSOCIATION. 2024 global semiconductor market autumn forecast report[EB/OL]. (2024-09-18) [2024-10-09]. http://wicassociation.org/articles/101.html (in Chinses). [8] ZHANG Y H, SUN M, LIU Z H, et al. Electrothermal simulation and thermal performance study of GaN vertical and lateral power transistors[J]. IEEE Transactions on Electron Devices, 2013, 60(7): 2224-2230. [9] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [10] JOSHI S N, ZHOU F, LIU Y H, et al. A review of select patented technologies for cooling of high heat flux power semiconductor devices[J]. IEEE Transactions on Power Electronics, 2023, 38(6): 6790-6794. [11] CHARBONEAU B C, WANG F, VAN WYK J D, et al. Double-sided liquid cooling for power semiconductor devices using embedded power packaging[J]. IEEE Transactions on Industry Applications, 2008, 44(5): 1645-1655. [12] KHORUNZHII I, GABOR H, JOB R, et al. Modelling of a pin-fin heat converter with fluid cooling for power semiconductor modules[J]. International Journal of Energy Research, 2003, 27(11): 1015-1026. [13] CHO J, LI Z J, ASHEGHI M, et al. Near-junction thermal management: thermal conduction in gallium nitride composite substrates[J]. Annual Review of Heat Transfer, 2015, 18: 7-45. [14] BAR-COHEN A, ALBRECHT J D, MAURER J J. Near-junction thermal management for wide bandgap devices[C]. 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). IEEE, 2011: 1-5. [15] QIAN C, GHEITAGHY A M, FAN J J, et al. Thermal management on IGBT power electronic devices and modules[J]. IEEE Access, 2018, 6: 12868-12884. [16] SHENAI K. Future prospects of widebandgap (WBG) semiconductor power switching devices[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 248-257. [17] SHE X, HUANG A Q, LUCÍA Ó, et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205. [18] ZHANG Y H, ZUBAIR A, LIU Z H, et al. GaN FinFETs and trigate devices for power and RF applications: review and perspective[J]. Semiconductor Science Technology, 2021, 36(5): 054001. [19] JONES E A, WANG F F, COSTINETT D. Review of commercial GaN power devices and GaN-based converter design challenges[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 707-719. [20] ALVES L F S, GOMES R C M, LEFRANC P, et al. SIC power devices in power electronics: an overview[C]. 2017 Brazilian Power Electronics Conference (COBEP). November 19-22, 2017, Juiz de Fora, Brazil. IEEE, 2017: 1-8. [21] ZHANG Y H, PALACIOS T. (Ultra)wide-bandgap vertical power FinFETs[J]. IEEE Transactions on Electron Devices, 2020, 67(10): 3960-3971. [22] HU Q Y. Advancements and prospects in third-generation semiconductor materials: a comprehensive analysis[J]. Highlights in Science, Engineering and Technology, 2024, 81: 631-636. [23] CHAUDHARY O S, DENAÏ M, REFAAT S S, et al. Technology and applications of wide bandgap semiconductor materials: current state and future trends[J]. Energies, 2023, 16(18): 6689. [24] 周选择. 基于超宽禁带氧化镓半导体材料的增强型场效应晶体管设计研制[D]. 合肥: 中国科学技术大学, 2023. ZHOU X Z. Design and development of enhanced field effect transistor based on ultra-wide band gap gallium oxide semiconductor material[D]. Hefei: University of Science and Technology of China, 2023 (in Chinese). [25] TSAO J Y, CHOWDHURY S, HOLLIS M A, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges[J]. Advanced Electronic Materials, 2018, 4(1): 1600501. [26] DONATO N, ROUGER N, PERNOT J, et al. Diamond power devices: state of the art, modelling, figures of merit and future perspective[J]. Journal of Physics D: Applied Physics, 2020, 53(9): 093001. [27] QIN Y, ALBANO B, SPENCER J, et al. Thermal management and packaging of wide and ultra-wide bandgap power devices: a review and perspective[J]. Journal of Physics D: Applied Physics, 2023, 56(9): 093001. [28] SHENAI K, DUDLEY M, DAVIS R F. Current status and emerging trends in wide bandgap (WBG) semiconductor power switching devices[J]. ECS Journal of Solid State Science and Technology, 2013, 2(8): N3055-N3063. [29] WELLMANN P J. Power electronic semiconductor materials for automotive and energy saving applications - SiC, GaN, Ga2O3, and diamond[J]. Zeitschrift für anorganische und allgemeine Chemie, 2017, 643(21): 1312-1322. [30] BUFFOLO M, FAVERO D, MARCUZZI A, et al. Review and outlook on GaN and SiC power devices: industrial state-of-the-art, applications, and perspectives[J]. IEEE Transactions on Electron Devices, 2024, 71(3): 1344-1355. [31] ZHAO S, CONNIE A T, DASTJERDI M H T, et al. Aluminum nitride nanowire light emitting diodes: breaking the fundamental bottleneck of deep ultraviolet light sources[J]. Scientific Reports, 2015, 5: 8332. [32] SCHRECK M. Growth of single crystal diamond wafers for future device applications[M].New York: John Wiley & Sons Inc, 2021. [33] HE H Y, BLANCO M A, PANDEY R. Electronic and thermodynamic properties of β-Ga2O3[J]. Applied Physics Letters, 2006, 88(26): 261904. [34] HE H Y, ORLANDO R, BLANCO M A, et al. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases[J]. Physical Review B, 2006, 74(19): 195123. [35] KROLL P, DRONSKOWSKI R, MARTIN M. Formation of spinel-type gallium oxynitrides: a density-functional study of binary and ternary phases in the system Ga-O-N[J]. Journal of Materials Chemistry, 2005, 15(32): 3296-3302. [36] YOSHIOKA S, HAYASHI H, KUWABARA A, et al. Structures and energetics of Ga2O3polymorphs[J]. Journal of Physics: Condensed Matter, 2007, 19(34): 346211. [37] HUDGINS J L, SIMIN G S, SANTI E, et al. An assessment of wide bandgap semiconductors for power devices[J]. IEEE Transactions on Power Electronics, 2003, 18(3): 907-914. [38] MA N, TANEN N, VERMA A, et al. Intrinsic electron mobility limits in β-Ga2O3[J]. Applied Physics Letters, 2016, 109(21): 212101. [39] ONUMA T, SAITO S, SASAKI K, et al. Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β-Ga2O3 single crystals[J]. Applied Physics Letters, 2016, 108(10): 101904. [40] ORITA M, OHTA H, HIRANO M, et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films[J]. Applied Physics Letters, 2000, 77(25): 4166-4168. [41] ONUMA T, SAITO S, SASAKI K, et al. Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy[J]. Japanese Journal of Applied Physics, 2015, 54(11): 112601. [42] BALIGA B J. Semiconductors for high-voltage, vertical channel field-effect transistors[J]. Journal of Applied Physics, 1982, 53(3): 1759-1764. [43] SCHUBERT M, KORLACKI R, KNIGHT S, et al. Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals[J]. Physical Review B, 2016, 93(12): 125209. [44] GHOSH K, SINGISETTI U. Ab initio velocity-field curves in monoclinic β-Ga2O3[J]. Journal of Applied Physics, 2017, 122(3): 035702. [45] JOHNSON E. Physical limitations on frequency and power parameters of transistors[C]. 1958 IRE International Convention Record. March 21-25, 1966, New York, NY, USA. IEEE, 1966: 27-34. [46] ZHANG J Y, SHI J L, QI D C, et al. Recent progress on the electronic structure, defect, and doping properties of Ga2O3[J]. APL Materials, 2020, 8(2): 020906. [47] WU C, GUO D Y, ZHANG L Y, et al. Systematic investigation of the growth kinetics of β-Ga2O3 epilayer by plasma enhanced chemical vapor deposition[J]. Applied Physics Letters, 2020, 116(7): 072102. [48] ÅHMAN J, SVENSSON G, ALBERTSSON J. A reinvestigation of β-gallium oxide[J]. Acta Crystallographica Section C Crystal Structure Communications, 1996, 52(6): 1336-1338. [49] GALAZKA Z, IRMSCHER K, UECKER R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Crystal Growth, 2014, 404: 184-191. [50] VÍLLORA E G, SHIMAMURA K, UJIIE T, et al. Electrical conductivity and lattice expansion of β-Ga2O3 below room temperature[J]. Applied Physics Letters, 2008, 92(20): 202118. [51] GUO Z, VERMA A, WU X F, et al. Anisotropic thermal conductivity in single crystal β-gallium oxide[J]. Applied Physics Letters, 2015, 106(11): 111909. [52] JIANG P Q, QIAN X, LI X B, et al. Three-dimensional anisotropic thermal conductivity tensor of single crystalline β-Ga2O3[J]. Applied Physics Letters, 2018, 113(23): 232105. [53] HANDWERG M, MITDANK R, GALAZKA Z, et al. Temperature-dependent thermal conductivity in Mg-doped and undoped β-Ga2O3 bulk-crystals[EB/OL]. 2014: 1407.4272.https://arxiv.org/abs/1407.4272v2. [54] HANDWERG M, MITDANK R, GALAZKA Z, et al. Temperature-dependent thermal conductivity and diffusivity of a Mg-doped insulating β-Ga2O3 single crystal along [100], [010] and [001] [J]. Semiconductor Science and Technology, 2016, 31(12): 125006. [55] SANTIA M D, TANDON N, ALBRECHT J D. Lattice thermal conductivity in β-Ga2O3 from first principles[J]. Applied Physics Letters, 2015, 107(4): 041907. [56] WANG H D, ZHANG Y Z, ZHANG L F, et al. Crystal structure prediction of binary alloys via deep potential[J]. Frontiers in Chemistry, 2020, 8: 589795. [57] GRIMME S. Accurate description of van der Waals complexes by density functional theory including empirical corrections[J]. Journal of Computational Chemistry, 2004, 25(12): 1463-1473. [58] WANG Y Z, FAN Z Y, QIAN P, et al. Quantum-corrected thickness-dependent thermal conductivity in amorphous silicon predicted by machine learning molecular dynamics simulations[J]. Physical Review B, 2023, 107(5): 054303. [59] ZHANG H G, GU X K, FAN Z Y, et al. Vibrational anharmonicity results in decreased thermal conductivity of amorphous HfO2 at high temperature[J]. Physical Review B, 2023, 108(4): 045422. [60] LIU Y B, YANG J Y, XIN G M, et al. Machine learning interatomic potential developed for molecular simulations on thermal properties of β-Ga2O3[J]. Journal of Chemical Physics, 2020, 153(14): 144501. [61] LI R Y, LIU Z Y, ROHSKOPF A, et al. A deep neural network interatomic potential for studying thermal conductivity of β-Ga2O3[J]. Applied Physics Letters, 2020, 117(15): 152102. [62] ZHAO J L, BYGGMÄSTAR J, HE H, et al. Complex Ga2O3 polymorphs explored by accurate and general-purpose machine-learning interatomic potentials[J]. NPJ Computational Materials, 2023, 9: 159. [63] LIU Y B, LIANG H L, YANG L, et al. Unraveling thermal transport correlated with atomistic structures in amorphous gallium oxide via machine learning combined with experiments[J]. Advanced Materials, 2023, 35(24): 2210873. [64] WANG X N, YANG J F, YING P H, et al. Dissimilar thermal transport properties in κ-Ga2O3 and β-Ga2O3 revealed by machine-learning homogeneous nonequilibrium molecular dynamics simulations[EB/OL]. (2023-11-03)[2024-11-10] 2023: 2311.01099. https://arxiv.org/abs/2311.01099v1. [65] 顾奕奕. 一文看懂超宽禁带半导体材料:氧化镓(Ga2O3)[EB/OL].(2023-02-28)[2024-11-10]. https://baijiahao.baidu.com/s?id=1759037596181248248&wfr=spider&for=pc. GU Y Y. Understanding Ultrawide bandgap semiconductor material: gallium oxide in one text[EB/OL]. (2023-02-28) [2024-11-10]. https://baijiahao.baidu.com/s?id=1759037596181248248&wfr=spider&for=pc (in Chinese). [66] CHEN X, JAGADISH C, YE J. Fundamental properties and power electronic device progress of gallium oxide[M]//ASIM R. Oxide Electronics. New York: John Wiley & Sons Inc, 2021: 235-352 [67] SUGANYA R, NAVEENKUMAR P, BALAJI B, et al. Sliding mode resonant controlled step up coupled inductor fed DC-DC converter with gallium oxide semiconductor material[J]. Materials Today: Proceedings, 2023, 77: 414-423. [68] HWANG W S, VERMA A, PEELAERS H, et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes[J]. Applied Physics Letters, 2014, 104(20): 203111. [69] HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates[J]. Applied Physics Letters, 2012, 100(1): 013504. [70] 封兆青. 基于β-Ga2O3大功率金属氧化物半导体场效应晶体管的研究[D]. 西安: 西安电子科技大学, 2021. FENG Z Q. Research on high power metal oxide semiconductor field effect transistor based on β-Ga2O3[D]. Xi’an: Xidian University, 2021 (in Chinese). [71] TADJER M J. Toward gallium oxide power electronics[J]. Science, 2022, 378(6621): 724-725. [72] PRATIYUSH A S, KRISHNAMOORTHY S, MURALIDHARAN R, et al. Advances in Ga2O3 solar-blind UV photodetectors[M]//Gallium Oxide Technology, Devices and Applications. Amsterdam: Elsevier, 2019: 369-399. [73] ZHENG X Q, XIE Y, LEE J, et al. Beta gallium oxide (β-Ga2O3) nanoelectromechanical transducer for dual-modality solar-blind ultraviolet light detection[J]. APL Materials, 2019, 7(2): 022523. [74] LI Z L. Innovative development and prospects of solar-blind photodetectors[J]. Highlights in Science, Engineering and Technology, 2024, 112: 160-167. [75] DING W H, MENG X Q. High performance solar-blind UV detector based on β-Ga2O3/GaN nanowires heterojunction[J]. Journal of Alloys and Compounds, 2021, 866: 157564. [76] TANG X, LI K H, ZHAO Y, et al. Quasi-epitaxial growth of β-Ga2O3-coated wide band gap semiconductor tape for flexible UV photodetectors[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1304-1314. [77] CHEN H, CHEN D Z, FENG Q, et al. Review of β-Ga2O3 solar-blind ultraviolet photodetector: growth, device, and application[J]. Semiconductor Science and Technology, 2024, 39(6): 063001. [78] GREEN A J, CHABAK K D, BALDINI M, et al. β-Ga2O3 MOSFETs for radio frequency operation[J]. IEEE Electron Device Letters, 2017, 38(6): 790-793. [79] CHABAK K D, WALKER D E, GREEN A J, et al. Sub-micron gallium oxide radio frequency field-effect transistors[C]. 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). IEEE, 2018: 1-3. [80] SINGH M, CASBON M A, UREN M J, et al. Pulsed large signal RF performance of field-plated Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2018, 39(10): 1572-1575. [81] ]YADAVA N, CHAUHAN R K. RF performance investigation of β-Ga2O3/graphene and β-Ga2O3/black phosphorus heterostructure MOSFETs[J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3058-Q3063. [82] YADAVA N, MANI S, CHAUHAN R K. Impact of p-type NiO pocket and ultra-thin graphene layer on the RF performance of β-Ga2O3 MOSFET[J]. ECS Journal of Solid State Science and Technology, 2020, 9(4): 045007. [83] SINGH R, LENKA T R, PANDA D, et al. RF performance of ultra-wide bandgap HEMTs[M]. Emerging Trends in Terahertz Solid-State Physics and Devices, 2020: 49-63. [84] YADAVA N, CHAUHAN R K. Evaluation of the RF performance of the β-Ga2O3 negative-capacitance field-effect transistor[J]. Journal of Computational Electronics, 2020, 19(2): 603-612. [85] KIM S, ZHANG Y W, YUAN C, et al. Thermal management of β-Ga2O3 current aperture vertical electron transistors[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(8): 1171-1176. [86] CHATTERJEE B, ZENG K, NORDQUIST C D, et al. Device-level thermal management of gallium oxide field-effect transistors[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(12): 2352-2365. [87] LEE C, ROCK N D, ISLAM A, et al. Electron-phonon effects and temperature-dependence of the electronic structure of monoclinic β-Ga2O3[J]. APL Materials, 2023, 11(1): 011106. [88] DONG H, LONG S B, SUN H D, et al. Fast switching β-Ga2O3 power MOSFET with a trench-gate structure[J]. IEEE Electron Device Letters, 2019, 40(9): 1385-1388. [89] AFZAL A. β-Ga2O3 nanowires and thin films for metal oxide semiconductor gas sensors: sensing mechanisms and performance enhancement strategies[J]. Journal of Materiomics, 2019, 5(4): 542-557. [90] PARET P, MORENO G, KEKELIA B, et al. Thermal and thermomechanical modeling to design a gallium oxide power electronics package[C]. 2018 IEEE 6th workshop on wide bandgap power devices and applications (WiPDA). IEEE, 2018: 287-294. [91] AHMADI E, OSHIMA Y. Materials issues and devices of α- and β-Ga2O3[J]. Journal of Applied Physics, 2019, 126(16): 160901. [92] WILHELMI F, KOMATSU Y, YAMAGUCHI S, et al. Packaged β-Ga2O3 Schottky diodes with reduced thermal resistance by substrate thinning to 200 μm[C]. in CIPS 2022; 12th International Conference on Integrated Power Electronics Systems. March 15-17, 2022, Berlin, Germany. VDE, 2022: 1-6. [93] WILHELMI F, KOMATSU Y, YAMAGUCHI S, et al. Switching properties of 600 V Ga2O3 diodes with different chip sizes and thicknesses[J]. IEEE Transactions on Power Electronics, 2023, 38(7): 8406-8418. [94] WILHELMI F, KOMATSU Y, YAMAGUCHI S, et al. Improving the heat dissipation and current rating of Ga2O3 Schottky diodes by substrate thinning and junction-side cooling[J]. IEEE Transactions on Power Electronics, 2023, 38(6): 7107-7117. [95] SEKI S, FUNAKI T, ARIMA J, et al. Evaluation of thermal resistance reduction by thinning substrate of β-Ga2O3 SBD[C]. 2023 International Conference on Electronics Packaging (ICEP). April 19-22, 2023, Kumamoto, Japan. IEEE, 2023: 193-194. [96] GREEN A J, SPECK J, XING G, et al. β-gallium oxide power electronics[J]. APL Materials, 2022, 10(2): 029201. [97] SONG Y W, SHOEMAKER D, LEACH J H, et al. Ga2O3-on-SiC composite wafer for thermal management of ultrawide bandgap electronics[J]. ACS Applied Materials & Interfaces, 2021, 13(34): 40817-40829. [98] SONG Y W, BHATTACHARYYA A, KARIM A, et al. Ultra-wide band gap Ga2O3-on-SiC MOSFETs[J]. ACS Applied Materials & Interfaces, 2023, 15(5): 7137-7147. [99] XIE Y F, HE Y, ZOU B, et al. Characteristics of β-Ga2O3 MOSFETs on polycrystalline diamond via electrothermal modeling[J]. Diamond and Related Materials, 2024, 142: 110847. [100] AVILA-AVENDANO C, PINTOR-MONROY M I, ORTIZ-CONDE A, et al. Deep UV sensors enabling solar-blind flame detectors for large-area applications[J]. IEEE Sensors Journal, 2021, 21(13): 14815-14821. [101] NEPAL N, KATZER D S, DOWNEY B P, et al. Heteroepitaxial growth of β-Ga2O3 films on SiC via molecular beam epitaxy[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2020, 38(6): 063406. [102] TAKAGI H, KURASHIMA Y, MATSUMAE T, et al. Ga2O3/Si and Al2O3/Si room-temperature wafer bonding using in situ deposited Si thin film[J]. ECS Transactions, 2018, 86(5): 169-174. [103] XU W H, WANG Y B, YOU T G, et al. First demonstration of waferscale heterogeneous integration of Ga2O3 MOSFETs on SiC and Si substrates by ion-cutting process[C]. in 2019 IEEE International Electron Devices Meeting (IEDM). December 7-11, 2019, San Francisco, CA, USA. IEEE, 2019: 12.5.1-12.5.4. [104] NOH J, ALAJLOUNI S, TADJER M J, et al. High performance β-Ga2O3 nano-membrane field effect transistors on a high thermal conductivity diamond substrate[J]. IEEE Journal of the Electron Devices Society, 2019, 7: 914-918. [105] YADAV M K, MONDAL A, DAS S, et al. Impact of annealing temperature on band-alignment of PLD grown Ga2O3/Si (100) heterointerface[J]. Journal of Alloys and Compounds, 2020, 819: 153052. [106] CHENG Z, YATES L, SHI J J, et al. Thermal conductance across β-Ga2O3-diamond van der Waals heterogeneous interfaces[J]. APL Materials, 2019, 7(3): 031118. [107] 徐文慧. 晶圆级高导热氧化镓异质集成材料与器件[D]. 上海: 中国科学院上海微系统与信息技术研究所, 2022. XU W H. Heterogeneous integration of wafer scale Ga2O3 Materials and devices with high thermal conductivity[D]. Shanghai: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 2022 (in Chinese). [108] XU W H, YOU T G, WANG Y B, et al. Efficient thermal dissipation in wafer-scale heterogeneous integration of single-crystalline β-Ga2O3 thin film on SiC[J]. Fundamental Research, 2021, 1(6): 691-696. [109] XIE Y F, XU W H, HE Y, et al. Three-dimensional thermal analysis of heterogeneously integrated β-Ga2O3-on-SiC SBDs using Raman thermography and electrothermal modeling[J]. Applied Physics Letters, 2024, 124(25): 252105. [110] QU Z Y, XIE Y F, ZHAO T C, et al. Extremely low thermal resistance of β-Ga2O3 MOSFETs by co-integrated design of substrate engineering and device packaging[J]. ACS Applied Materials & Interfaces, 2024, 16(42): 57816-57823. [111] YU X X, XU W H, WANG Y B, et al. Heterointegrated Ga2O3-on-SiC RF MOSFETs with fT/fmax of 47/51 GHz by ion-cutting process[J]. IEEE Electron Device Letters, 2023, 44(12): 1951-1954. [112] WANG Y, HAN G, XU W, et al. Recessed-gate Ga2O3-on-SiC MOSFETs demonstrating a stable power figure of merit of 100 mW/cm2 up to 200 ℃[J]. IEEE Transactions on Electron Devices, 2022, 69(4): 1945-1949. [113] LIN C H, HATTA N, KONISHI K, et al. Single-crystal-Ga2O3/polycrystalline-SiC bonded substrate with low thermal and electrical resistances at the heterointerface[J]. Applied Physics Letters, 2019, 114(3): 032103. [114] CHOI S, GRAHAM S, CHOWDHURY S, et al. A perspective on the electro-thermal co-design of ultra-wide bandgap lateral devices[J]. Applied Physics Letters, 2021, 119(17): 170501. [115] CHEN C, LUO F, KANG Y. A review of SiC power module packaging: layout, material system and integration[J]. CPSS Transactions on Power Electronics and Applications, 2017, 2(3): 170-186. [116] OH S K, LUNDH J S, SHERVIN S, et al. Thermal management and characterization of high-power wide-bandgap semiconductor electronic and photonic devices in automotive applications[J]. Journal of Electronic Packaging, 2019, 141(2): 020801. [117] 冯家驹, 范亚明, 房 丹, 等. 氮化镓功率电子器件封装技术研究进展[J]. 人工晶体学报, 2022, 51(4): 730-749. FENG J J, FAN Y M, FANG D, et al. Research progress of gallium nitride power electronic device packaging technology[J]. Journal of Synthetic Crystals, 2022, 51(4): 730-749 (in Chinese). [118] CHATTERJEE B, LI W S, NOMOTO K, et al. Thermal design of multi-fin Ga2O3 vertical transistors[J]. Applied Physics Letters, 2021, 119(10): 103502. [119] YU C J, BUTTAY C, LABOURÉ É. Thermal management and electromagnetic analysis for GaN devices packaging on DBC substrate[J]. IEEE Transactions on Power Electronics, 2017, 32(2): 906-910. [120] DE BOCK H P, HUITINK D, SHAMBERGER P, et al. A system to package perspective on transient thermal management of electronics[J]. Journal of Electronic Packaging, 2020, 142(4): 041111. [121] KIM S H, SPENCER LUNDH J, SHOEMAKER D, et al. Device-level transient cooling of β-Ga2O3 MOSFETs[C]. in 2022 21 st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm). May 31 - June 3, 2022, San Diego, CA, USA. IEEE, 2022: 1-6. [122] BAR-COHEN A, MAURER J J, ALTMAN D H. Embedded cooling for wide bandgap power amplifiers: a review[J]. Journal of Electronic Packaging, 2019, 141(4): 040803. [123] LALOYA E, LUCÍA Ó, SARNAGO H, et al. Heat management in power converters: from state of the art to future ultrahigh efficiency systems[J]. IEEE Transactions on Power Electronics, 2016, 31(11): 7896-7908. [124] WANG B Y, XIAO M, KNOLL J, et al. Low thermal resistance (0.5 K/W) Ga2O3 Schottky rectifiers with double-side packaging[J]. IEEE Electron Device Letters, 2021, 42(8): 1132-1135. [125] KIM S H, SHOEMAKER D, GREEN A J, et al. Transient thermal management of a β-Ga2O3 MOSFET using a double-side diamond cooling approach[J]. IEEE Transactions on Electron Devices, 2023, 70(4): 1628-1635. [126] YUAN C, ZHANG Y W, MONTGOMERY R, et al. Modeling and analysis for thermal management in gallium oxide field-effect transistors[J]. Journal of Applied Physics, 2020, 127(15): 154502. [127] ISLAM A E, SEPELAK N P, LIDDY K J, et al. 500 ℃ operation of β-Ga2O3 field-effect transistors[J]. Applied Physics Letters, 2022, 121(24): 243501. [128] HONG W, ZHANG C, ZHANG F, et al. Performance improvement of β-Ga2O3 SBD-based rectifier with embedded microchannels in ceramic substrate[J]. Science China Information Sciences, 2024, 67(5): 159404. [129] MAIMON O, LI Q L. Progress in gallium oxide field-effect transistors for high-power and RF applications[J]. Materials, 2023, 16(24): 7693. [130] SARKAR S, GUPTA R, ROY T, et al. Review of jet impingement cooling of electronic devices: emerging role of surface engineering[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123888. [131] IRMSCHER K, GALAZKA Z, PIETSCH M, et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Applied Physics, 2011, 110(6): 063720. [132] NEAL A T, MOU S, RAFIQUE S, et al. Donors and deep acceptors in β-Ga2O3[J]. Applied Physics Letters, 2018, 113(6): 062101. [133] PARISINI A, FORNARI R. Analysis of the scattering mechanisms controlling electron mobility in β-Ga2O3 crystals[J]. Semiconductor Science and Technology, 2016, 31(3): 035023. [134] KANG Y, KRISHNASWAMY K, PEELAERS H, et al. Fundamental limits on the electron mobility of β-Ga2O3[J]. Journal of Physics Condensed Matter, 2017, 29(23): 234001. [135] SIVAMANI C, MURUGAPANDIYAN P, MOHANBABU A, et al. High performance enhancement mode GaN HEMTs using β-Ga2O3 buffer for power switching and high frequency applications: a simulation study[J]. Microelectronics Journal, 2023, 140: 105946. [136] LI Y H, ZHENG X F, ZHANG F, et al. Thermal management and switching performance of β-Ga2O3 vertical FinFET with diamond-gate structure[J]. Semiconductor Science and Technology, 2024, 39(7): 075001. [137] GONG C, MCDONNELL S, QIN X Y, et al. Realistic metal-graphene contact structures[J]. ACS Nano, 2014, 8(1): 642-649. [138] BLOSCHOCK K P, BAR-COHEN A. Advanced thermal management technologies for defense electronics[C]. Defense Transformation and Net-Centric Systems 2012. Baltimore, Maryland, USA. SPIE, 2012: 157-168. [139] BAR-COHEN A, MAURER J J, SIVANANTHAN A. Near-junction microfluidic cooling for wide bandgap devices[J]. MRS Advances, 2016, 1(2): 181-195. [140] ALBANO B, WANG B Y, ZHANG Y H, et al. Electro-thermal device-package co-design for ultra-wide bandgap gallium oxide power devices[C]. 2022 IEEE Energy Conversion Congress and Exposition (ECCE). October 9-13, 2022, Detroit, MI, USA. IEEE, 2022: 1-7. [141] TIERNEY B D, CHOI S, DASGUPTA S, et al. Evaluation of a “field cage” for electric field control in GaN-based HEMTs that extends the scalability of breakdown into the kV regime[J]. IEEE Transactions on Electron Devices, 2017, 64(9): 3740-3747. [142] LENG Z, YANG Z Y, TANG X X, et al. Progress in percolative composites with negative permittivity for applications in electromagnetic interference shielding and capacitors[J]. Advanced Composites and Hybrid Materials, 2023, 6(6): 195. [143] TIAGULSKYI S, YATSKIV R, CˇERNOHORSKY' O, et al. Perspectives of miniaturization of β-Ga2O3 devices with graphene electrodes[J]. Materials Science in Semiconductor Processing, 2024, 176: 108343. [144] YUAN H D, SU J, ZHANG J, et al. Synergistic effect of covalent functionalization and intrinsic electric field on β-Ga2O3/graphene heterostructures[J]. Applied Physics Letters, 2022, 121(23): 231601. [145] KARMAKAR S, SHIAM I F, MANIKANTHABABU N, et al. Upheaval of negative dielectric permittivity and semiconductor to metallic transition in a thermally induced Sn-doped β-Ga2O3 (201) single crystal[J]. ACS Applied Materials & Interfaces, 2024, 16(36): 48488-48501. [146] LIU A C, HSIEH C H, LANGPOKLAKPAM C, et al. State-of-the-art β-Ga2O3 field-effect transistors for power electronics[J]. ACS Omega, 2022, 7(41): 36070-36091. [147] CANBAY C A, KARADUMAN O. The photo response properties of shape memory alloy thin film based photodiode[J]. Journal of Molecular Structure, 2021, 1235: 130263. [148] POLVERINO S. Graphene-based construction materials: experimentation and application development[D]. Liguria, Italy: University of Genoa, 2021. [149] YOO T J. Leveraging multimodal data analytics with advanced electron microscopy to obtain quantitative structural insights into complex materials[D]. Florida: University of Florida, 2024. [150] SARUA A, JI H F, HILTON K P, et al. Thermal boundary resistance between GaN and substrate in AlGaN/GaN electronic devices[J]. IEEE Transactions on Electron Devices, 2007, 54(12): 3152-3158. [151] SUN H R, SIMON R B, POMEROY J W, et al. Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications[J]. Applied Physics Letters, 2015, 106(11): 111906. [152] MANOI A, POMEROY J W, KILLAT N, et al. Benchmarking of thermal boundary resistance in AlGaN/GaN HEMTs on SiC substrates: implications of the nucleation layer microstructure[J]. IEEE Electron Device Letters, 2010, 31(12): 1395-1397. [153] SHI J J, YUAN C, HUANG H L, et al. Thermal transport across metal/β-Ga2O3 interfaces[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 29083-29091. [154] CHENG Z, GRAHAM S, AMANO H, et al. Perspective on thermal conductance across heterogeneously integrated interfaces for wide and ultrawide bandgap electronics[J]. Applied Physics Letters, 2022, 120(3): 030501. [155] CHENG Z, LI R Y, YAN X X, et al. Experimental observation of localized interfacial phonon modes[J]. Nature Communications, 2021, 12(1): 6901. [156] MURAKAMI T, HORI T, SHIGA T, et al. Probing and tuning inelastic phonon conductance across finite-thickness interface[J]. Applied Physics Express, 2014, 7(12): 121801. [157] GIRI A, HOPKINS P E. Analytical model for thermal boundary conductance and equilibrium thermal accommodation coefficient at solid/gas interfaces[J]. Journal of Chemical Physics, 2016, 144(8): 084705. [158] ALEM S A A, LATIFI R, ANGIZI S, et al. Microwave sintering of ceramic reinforced metal matrix composites and their properties: a review[J]. Materials and Manufacturing Processes, 2020, 35(3): 303-327. [159] BOTELER L M, NIEMANN V A, URCIUOLI D P, et al. Stacked power module with integrated thermal management[C]. 2017 IEEE International Workshop on Integrated Power Packaging (IWIPP). April 5-7, 2017, Delft, Netherlands. IEEE, 2017: 1-5. [160] JOHN R, ATXAGA G, FRERKER H J, et al. Advancement of multifunctional support structure technologies (AMFSST)[C]. in 2007 13th International Workshop on Thermal Investigation of ICs and Systems (THERMINIC). September 17-19, 2007, Budapest, Hungary. IEEE, 2007: 98-103. [161] BUTTAY C, PLANSON D, ALLARD B, et al. State of the art of high temperature power electronics[J]. Materials Science and Engineering: B, 2011, 176(4): 283-288. [162] NEUDECK P G, OKOJIE R S, CHEN L Y. High-temperature electronics - a role for wide bandgap semiconductors?[J]. Proceedings of the IEEE, 2002, 90(6): 1065-1076. [163] YAO Y Y, LU G Q, BOROYEVICH D, et al. Survey of high-temperature polymeric encapsulants for power electronics packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, 5(2): 168-181. [164] KHAZAKA R, MENDIZABAL L, HENRY D, et al. Assessment of dielectric encapsulation for high temperature high voltage modules[C]. 2015 IEEE 65th Electronic Components and Technology Conference (ECTC). May 26-29, 2015, San Diego, CA, USA. IEEE, 2015: 1914-1919. [165] LIU L B, NAM D, GUO B, et al. Glass for encapsulating high-temperature power modules[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(3): 3725-3734. [166] MASSON A, SABBAH W, RIVA R, et al. Die attach using silver sintering. Practical implementation and analysis[J]. European Journal of Electrical Engineering, 2013, 16(3/4): 293-305. [167] GERSH J, DIMARINO C, DEVOTO D, et al. Reliability analysis of large-area, low-pressure-assisted silver sintering for medium-voltage power modules[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(5): 5252-5259. [168] GERSH J, DIMARINO C, DEVOTO D, et al. Evaluation of low-pressure-sintered multi-layer substrates for medium-voltage SiC power modules[C]. 2021 IEEE Applied Power Electronics Conference and Exposition (APEC). June 14-17, 2021, Phoenix, AZ, USA. IEEE, 2021: 20-26. [169] CAIRNIE M, GERSH J, DIMARINO C. Thermal and thermomechanical analysis of a 10 kV SiC MOSFET package with double-sided cooling[C]. 2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications (WiPDA). November 7-11, 2021, Redondo Beach, CA, USA. IEEE, 2021: 394-399. [170] BAR-COHEN A, MAURER J J, SIVANANTHAN A. Near-junction microfluidic thermal management of RF power amplifiers[C]. 2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS). November 2-4, 2015, Tel Aviv, Israel. IEEE, 2015: 1-8. [171] JOISHI C, ZHANG Y W, XIA Z B, et al. Breakdown characteristics of β-(Al0.22Ga0.78)2O3/Ga2O3 field-plated modulation-doped field-effect transistors[J]. IEEE Electron Device Letters, 2019, 40(8): 1241-1244. [172] VAN ERP R, SOLEIMANZADEH R, NELA L, et al. Co-designing electronics with microfluidics for more sustainable cooling[J]. Nature, 2020, 585(7824): 211-216. [173] DING C, LIU H, NGO K D T, et al. A double-side cooled SiC MOSFET power module with sintered-silver interposers: I-design, simulation, fabrication, and performance characterization[J]. IEEE Transactions on Power Electronics, 2021, 36(10): 11672-11680. [174] LASANCE C J M, SIMONS R E. Advances in high-performance cooling for electronics[J]. Electronics Cooling, 2005, 11(4): 22-39. [175] GEBRAEL T, LI J Q, GAMBOA A R, et al. High-efficiency cooling via the monolithic integration of copper on electronic devices[J]. Nature Electronics, 2022, 5: 394-402. [176] CAIRNIE M, DIMARINO C. Review of electric field reduction methods for medium-voltage power modules[C]. CIPS 2022; 12th International Conference on Integrated Power Electronics Systems. March 15-17, 2022, Berlin, Germany. VDE, 2022: 1-6. |
[1] | 屈珉敏, 余建刚, 李子唯, 李旺旺, 雷程, 李腾腾, 李丰超, 梁庭, 贾仁需. 新型复合终端氧化镓肖特基二极管电学特性仿真研究[J]. 人工晶体学报, 2025, 54(2): 348-357. |
[2] | 严宇超, 王琤, 陆昌程, 刘莹莹, 夏宁, 金竹, 张辉, 杨德仁. 2英寸Fe掺杂高阻β相氧化镓单晶生长及(010)衬底性质研究[J]. 人工晶体学报, 2025, 54(2): 197-201. |
[3] | 丁子舰, 颜世琪, 徐希凡, 辛倩. 脉冲激光沉积α相氧化镓薄膜及其日盲光电探测器[J]. 人工晶体学报, 2025, 54(2): 329-336. |
[4] | 邵双尧, 杨烁, 冯华钰, 贾志泰, 陶绪堂. 氧化镓雪崩光电探测器的研究进展[J]. 人工晶体学报, 2025, 54(2): 276-289. |
[5] | 魏雨夕, 马昕宇, 江泽俊, 魏杰, 罗小蓉. 超宽禁带氧化镓功率器件新结构及其电热特性研究进展[J]. 人工晶体学报, 2025, 54(2): 263-275. |
[6] | 李悌涛, 卢耀平, 陈端阳, 齐红基, 张海忠. 氧化镓同质外延及二维“台阶流”生长研究[J]. 人工晶体学报, 2025, 54(2): 219-226. |
[7] | 郁鑫鑫, 沈睿, 于含, 张钊, 赛青林, 陈端阳, 杨珍妮, 谯兵, 周立坤, 李忠辉, 董鑫, 张洪良, 齐红基, 陈堂胜. MOCVD生长的外延层掺杂氧化镓场效应晶体管[J]. 人工晶体学报, 2025, 54(2): 312-318. |
[8] | 陈绍华, 穆文祥, 张晋, 董旭阳, 李阳, 贾志泰, 陶绪堂. Ni掺杂β-Ga2O3单晶的光、电特性研究[J]. 人工晶体学报, 2023, 52(8): 1373-1377. |
[9] | 汪正鹏, 张崇德, 孙新雨, 胡天澄, 崔梅, 张贻俊, 巩贺贺, 任芳芳, 顾书林, 张荣, 叶建东. 切割角蓝宝石基氧化镓薄膜MOCVD外延及日盲紫外光电探测器制备[J]. 人工晶体学报, 2023, 52(6): 1007-1015. |
[10] | 高崇, 韦金汕, 欧阳政, 何敬晖, 王增辉, 卜予哲, 赛青林, 赵鹏. 氧化镓单晶在酸碱条件下的腐蚀坑形貌研究[J]. 人工晶体学报, 2023, 52(12): 2186-2195. |
[11] | 穆文祥, 贾志泰, 陶绪堂. 4英寸氧化镓单晶生长与性能[J]. 人工晶体学报, 2022, 51(9-10): 1749-1754. |
[12] | 王丹, 王晓丹, 夏长泰, 赛青林, 曾雄辉. Eu3+离子注入β-Ga2O3单晶的应力变化和发光性质研究[J]. 人工晶体学报, 2022, 51(4): 600-605. |
[13] | 李志伟, 唐慧丽, 徐军, 刘波. 超宽禁带半导体氧化镓基X射线探测器的研究进展[J]. 人工晶体学报, 2022, 51(3): 523-537. |
[14] | 马海鑫, 丁广玉, 邢艳辉, 韩军, 张尧, 崔博垚, 林文魁, 尹浩田, 黄兴杰. 不同退火条件对PEALD制备的Ga2O3薄膜特性的影响[J]. 人工晶体学报, 2021, 50(5): 838-844. |
[15] | 王新月, 张胜男, 霍晓青, 周金杰, 王健, 程红娟. 超宽禁带半导体β-Ga2O3相关研究进展[J]. 人工晶体学报, 2021, 50(11): 1995-2012. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||