[1] MILLÁN J, GODIGNON P, PERPIÑÀ X, et al. A survey of wide bandgap power semiconductor devices[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2155-2163. [2] TRIVEDI M, SHENAI K. Performance evaluation of high-power wide band-gap semiconductor rectifiers[J]. Journal of Applied Physics, 1999, 85(9): 6889-6897. [3] ZHONG Y Z, ZHANG J W, WU S, et al. A review on the GaN-on-Si power electronic devices[J]. Fundamental Research, 2022, 2(3): 462-475. [4] SHE X, HUANG A Q, LUCÍA Ó, et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205. [5] ZHANG H P, YUAN L, TANG X Y, et al. Progress of ultra-wide bandgap Ga2O3 semiconductor materials in power MOSFETs[J]. IEEE Transactions on Power Electronics, 2020, 35(5): 5157-5179. [6] WONG M H, HIGASHIWAKI M. Vertical β-Ga2O3 power transistors: a review[J]. IEEE Transactions on Electron Devices, 2020, 67(10): 3925-3937. [7] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [8] MASTRO M A, KURAMATA A, CALKINS J, et al. Perspective—opportunities and future directions for Ga2O3[J]. ECS Journal of Solid State Science and Technology, 2017, 6(5): P356-P359. [9] GHOSH K, SINGISETTI U. Impact ionization in β-Ga2O3[J]. Journal of Applied Physics, 2018, 124(8): 085707. [10] SASAKI K, HIGASHIWAKI M, KURAMATA A, et al. Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3 (010) substrates[J]. IEEE Electron Device Letters, 2013, 34(4): 493-495. [11] PEARTON S J, REN F, TADJER M, et al. Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS[J]. Journal of Applied Physics, 2018, 124(22): 220901. [12] HIGASHIWAKI M, JESSEN G H. Guest Editorial: the dawn of gallium oxide microelectronics[J]. Applied Physics Letters, 2018, 112(6): 060401. [13] LIN C H, YUDA Y, WONG M H, et al. Vertical Ga2O3 Schottky barrier diodes with guard ring formed by nitrogen-ion implantation[J]. IEEE Electron Device Letters, 2019, 40(9): 1487-1490. [14] KONISHI K, GOTO K, MURAKAMI H, et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes[J]. Applied Physics Letters, 2017, 110(10): 103506. [15] WANG B Y, XIAO M, SPENCER J, et al. 2.5 kV vertical Ga2O3 Schottky rectifier with graded junction termination extension[J]. IEEE Electron Device Letters, 2023, 44(2): 221-224. [16] LV Y J, MO J H, SONG X B, et al. Influence of gate recess on the electronic characteristics of β-Ga2O3 MOSFETs[J]. Superlattices and Microstructures, 2018, 117: 132-136. [17] DONG P F, ZHANG J C, YAN Q L, et al. 6 kV/3.4 mΩ·cm2 vertical β-Ga2O3 Schottky barrier diode with BV2/Ron, sp performance exceeding 1-D unipolar limit of GaN and SiC[J]. IEEE Electron Device Letters, 2022, 43(5): 765-768. [18] WEI Y X, LUO X R, WANG Y G, et al. Experimental study on static and dynamic characteristics of Ga2O3 Schottky barrier diodes with compound termination[J]. IEEE Transactions on Power Electronics, 2021, 36(10): 10976-10980. [19] WEI J, WEI Y X, LU J, et al. Experimental study on electrical characteristics of large-size vertical β-Ga2O3 junction barrier Schottky diodes[C]//2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD). May 22-25, 2022, Vancouver, BC, Canada. IEEE, 2022: 97-100. [20] WEI Y X, LUO X R, WANG Y G, et al. 600 V/7 A large-size RESURF β-Ga2O3 Schottky barrier diode with high-temperature storage test[J]. IEEE Transactions on Electron Devices, 2024, 71(2): 1320-1324. [21] JIANG Z L, WEI Y X, LV Y J, et al. Experimental investigation on threshold voltage instability for β-Ga2O3 MOSFET under electrical and thermal stress[J]. IEEE Transactions on Electron Devices, 2022, 69(9): 5048-5054. [22] JIANG Z L, WEI J, LV Y J, et al. Nonuniform mechanism for positive and negative bias stress instability in β-Ga2O3 MOSFET[J]. IEEE Transactions on Electron Devices, 2022, 69(10): 5509-5515. [23] JIANG Z L, DENG H R, ZHOU X Z, et al. Realizing high stability of threshold voltage in NiO/β-Ga2O3 heterojunction-gate FET operating up to 200 ℃ by electrothermal aging technology[J]. IEEE Transactions on Electron Devices, 2024, 71(3): 1598-1605. [24] JIANG Z L, LI X N, ZHOU X Z, et al. Experimental investigation on the instability for NiO/β-Ga2O3 heterojunction-gate FETs under negative bias stress[J]. Journal of Semiconductors, 2023, 44(7): 072803. |