欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (2): 263-275.DOI: 10.16553/j.cnki.issn1000-985x.2024.0265

• 器件制备 • 上一篇    下一篇

超宽禁带氧化镓功率器件新结构及其电热特性研究进展

魏雨夕1, 马昕宇1, 江泽俊1, 魏杰1, 罗小蓉1,2   

  1. 1.电子科技大学电子薄膜与集成器件全国重点实验室,成都 610054;
    2.成都信息工程大学微电子学院,成都 610225
  • 收稿日期:2024-10-31 发布日期:2025-03-04
  • 通信作者: 罗小蓉,博士,教授。E-mail:xrluo@uestc.edu.cn;罗小蓉,电子科技大学教授、博导,国家级人才计划入选者,173重点项目首席科学家,国防卓越青年科学基金获得者。主要从事功率半导体器件与集成技术研究,获国家级、省部级科技成果一等、二等奖励7项,主持国防科技创新特区项目、国家自然科学基金重点/面上项目、国家科技重大专项等国家级和省部级科研项目40余项,发表SCI检索论文120余篇,以第一发明人授权发明专利100余项,含美国专利6项。
  • 作者简介:魏雨夕(1996—),女,四川省人,博士。E-mail:yxwei@uestc.edu.cn
  • 基金资助:
    稳定专项(WDZC202446003);电子薄膜与集成器件全国重点实验室开放课题项目(KFJJ202306)

Research Progress of Ultra-Wide Bandgap β-Ga2O3 Power Devices on Novel Structures and Electro-Thermal Characteristics

WEI Yuxi1, MA Xinyu1, JIANG Zejun1, WEI Jie1, LUO Xiaorong1, 2   

  1. 1. State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
    2. College of Microelectronics, Chengdu University of Information Technology, Chengdu 610225, China
  • Received:2024-10-31 Published:2025-03-04

摘要: 氧化镓(β-Ga2O3)具有超宽禁带(Eg=4.5~4.9 eV)和高临界击穿场强(Ebr=8 MV/cm),器件的Baliga优值理论上可达SiC和GaN基器件的4倍和10倍。然而,氧化镓功率器件的耐压仍远低于理论值,且大功率器件及其热稳定性的研究较少;材料热导率低和缺陷多也导致器件发生电学特性漂移、性能加速退化等可靠性问题。本文首先介绍本团队在氧化镓功率器件新结构方面的研究进展,对研制的样品进行测试分析并研究其电热特性;然后开展了氧化镓金属氧化物半导体场效应晶体管(MOSFET)和异质结场效应晶体管(HJFET)的电热可靠性研究,本团队提出电离陷阱模型和界面偶极子电离模型解释其性能退化机制,此外,提出了一种新的可靠性加固技术,以提高β-Ga2O3 HJFET的电热可靠性。结果表明,氧化镓功率器件在高压、低功耗和高可靠性应用方面具有很大潜力。这些研究为氧化镓功率器件设计和优化提供新的思路,有力助推氧化镓功率器件实用化进程。

关键词: 氧化镓, 功率半导体器件, 二极管, 场效应晶体管, 电热特性, 可靠性

Abstract: Gallium oxide (β-Ga2O3) exhibits an ultra-wide bandgap (Eg=4.5~4.9 eV) and a high critical breakdown electric field (Ebr=8 MV/cm). The Baliga's figure of merit for β-Ga2O3-based devices is theoretically approximate four times and ten times as large as that of SiC- and GaN-based devices, respectively. Nevertheless, the breakdown voltage of β-Ga2O3 power devices is considerably below the theoretical limit; and there are few studies on high-power devices and their thermal stability. In addition, the low thermal conductivity of β-Ga2O3 materials and the presence of multiple defects result in many reliability issues, including the shift of electrical characteristics and the accelerated degradation of device performance. First, this work presents our researches on novel structures of β-Ga2O3 power devices, including the analysis of experimental results measured from the fabricated devices and the investigation of their electro-thermal characteristics. Second, this work studies the electro-thermal reliability of β-Ga2O3 mental-oxide-semiconductor field-effect transistor (MOSFET) and heterojunction field-effect transistor (HJFET). The ionized traps model and interface dipole ionization model are proposed to explain the degradation mechanism of β-Ga2O3 MOSFET and HJFET. Additionally, a novel reliability reinforcement technology is proposed to enhance the electro-thermal reliability of β-Ga2O3 HJFET. These studies indicate the considerable potential of β-Ga2O3 power devices in high-voltage, low-loss and high-reliability applications. Further, these studies provide novel insights into the design and optimisation of β-Ga2O3 power devices, and effectively advance the practical development of β-Ga2O3 power devices.

Key words: β-Ga2O3, power semiconductor device, diode, field effect transistor, electro-thermal characteristic, reliability

中图分类号: