1 |
LI D B, JIANG K, SUN X J, et al. AlGaN photonics: recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 2018, 10(1): 43.
|
2 |
周 政, 缪文南, 李 亚, 等. 可见光通信中GaN-LED PN结面积对调制带宽的影响机理[J]. 光学精密工程, 2020, 28(7): 1494-1499.
|
|
ZHOU Z, MIAO W N, LI Y, et al. Influence mechanism of GaN-LED’s PN junction area on modulation bandwidth in visible light communication[J]. Optics and Precision Engineering, 2020, 28(7): 1494-1499 (in Chinese).
|
3 |
TIAN P F, SHAN X Y, ZHU S J, et al. AlGaN ultraviolet micro-LEDs[J]. IEEE Journal of Quantum Electronics, 2022, 58(4): 1-14.
|
4 |
LEE V W, TWU N, KYMISSIS I. Micro-LED technologies and applications[J]. Information Display, 2016, 32(6): 16-23.
|
5 |
YU H B, YAO J K, MEMON M H, et al. Vertically integrated self-monitoring AlGaN-based deep ultraviolet micro-LED array with photodetector via a transparent sapphire substrate toward stable and compact maskless photolithography application[J]. Laser & Photonics Reviews, 2024: 2401220.
|
6 |
FENG F, ZHANG K, LIU Y B, et al. AlGaN-based deep-UV micro-LED array for quantum dots converted display with ultra-wide color gamut[J]. IEEE Electron Device Letters, 2022, 43(1): 60-63.
|
7 |
王丁可, 胡海龙, 郭太良, 等. 超高分辨LED显示[J]. 发光学报, 2023, 44(10): 1721-1732.
|
|
WANG D K, HU H L, GUO T L, et al. Ultra-high resolution LED display[J]. Chinese Journal of Luminescence, 2023, 44(10): 1721-1732 (in Chinese).
|
8 |
郭春辉, 孙雪娇, 郭 凯, 等. 紫外光通信用日盲型LED研究进展[J]. 发光学报, 2023, 44(10): 1849-1861.
|
|
GUO C H, SUN X J, GUO K, et al. Recent progress of solar blind light emitting diodes for ultraviolet optical wireless communication use[J]. Chinese Journal of Luminescence, 2023, 44(10): 1849-1861 (in Chinese).
|
9 |
KIM D Y, PARK J H, LEE J W, et al. Overcoming the fundamental light-extraction efficiency limitations of deep ultraviolet light-emitting diodes by utilizing transverse-magnetic-dominant emission[J]. Light: Science & Applications, 2015, 4(4): e263.
|
10 |
KNEISSL M, SEONG T Y, HAN J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies[J]. Nature Photonics, 2019, 13: 233-244.
|
11 |
杨杭, 黄文俊, 张胡梦圆, 等. GaN基Micro-LED的外量子效率研究(英文) [J]. 半导体光电, 2022, 43(3):522-528.
|
|
YANG H, HUANG W J, ZHANG-HU M Y, et al. Investigation of external quantum efficiency of GaN-based Micro-LEDs[J]. Semiconductor Optoelectronics, 2022, 43(3): 522-528.
|
12 |
HWANG S, ISLAM M, ZHANG B, et al. A hybrid micro-pixel based deep ultraviolet light-emitting diode lamp[J]. Applied Physics Express, 2011, 4(1): 012102.
|
13 |
周 佳, 闫金健, 刘志强, 等. Micro LED当前面临的瓶颈及技术进展[J]. 光电子技术, 2023, 43(2): 91-113.
|
|
ZHOU J, YAN J J, LIU Z Q, et al. The current bottleneck and technical progress of micro LED[J]. Optoelectronic Technology, 2023, 43(2): 91-113 (in Chinese).
|
14 |
LU S P, ZHANG Y P, ZHANG Z H, et al. High-performance triangular miniaturized-LEDs for high current and power density applications[J]. ACS Photonics, 2021, 8(8): 2304-2310.
|
15 |
LU S P, LIU W, ZHANG Z H, et al. Low thermal-mass LEDs: size effect and limits[J]. Optics Express, 2014, 22(26): 32200-32207.
|
16 |
OLIVIER F, DAAMI A, LICITRA C, et al. Shockley-Read-Hall and auger non-radiative recombination in GaN based LEDs: a size effect study[J]. Applied Physics Letters, 2017, 111(2): 022104.
|
17 |
王玮东, 楚春双, 张丹扬, 等. 俄歇复合、电子泄漏和空穴注入对深紫外发光二极管效率衰退的影响(英文) [J]. 发光学报, 2021, 42(7):897-903.
|
|
WANG W D, CHU C S, ZHANG D Y, et al. Impact of auger recombination, electron leakage and hole injection on efficiency droop for DUV LEDs[J]. Chinese Journal of Luminescence, 2021, 42(7): 897-903.
|
18 |
蔡 鑫, 徐 俞, 曹 冰, 等. Micro-LED的侧壁损伤以及光学特性[J]. 人工晶体学报, 2023, 52(5): 812-817.
|
|
CAI X, XU Y, CAO B, et al. Sidewall damage and optical properties of micro-LED[J]. Journal of Synthetic Crystals, 2023, 52(5): 812-817 (in Chinese).
|
19 |
KOU J Q, SHEN C C, SHAO H, et al. Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes[J]. Optics Express, 2019, 27(12): A643-A653.
|
20 |
MA Z H, JI Y, HU T G, et al. Numerical analysis of the influence of sidewall defects on AlGaN-based deep ultraviolet micro-light emitting diodes[J]. Current Applied Physics, 2024, 67: 101-106.
|
21 |
PARK J H, PRISTOVSEK M, CAI W T, et al. Dislocation suppresses sidewall-surface recombination of micro-LEDs[J]. Laser & Photonics Reviews, 2023, 17(10): 2300199.
|
22 |
MEHNKE F, TRINH X T, PINGEL H, et al. Electronic properties of Si-doped Al x Ga1- x N with aluminum mole fractions above 80%[J]. 2016, 120(14): 145702.
|
23 |
JIANG K, SUN X J, SHI Z M, et al. Quantum engineering of non-equilibrium efficient p-doping in ultra-wide band-gap nitrides[J]. Light, Science & Applications, 2021, 10(1): 69.
|
24 |
HASAN M S, MEHEDI I M, FARUK REZA S M, et al. Analytical investigation of activation energy for Mg-doped p-AlGaN[J]. Optical and Quantum Electronics, 2020, 52(7): 348.
|
25 |
YU H B, MEMON M H, WANG D H, et al. AlGaN-based deep ultraviolet micro-LED emitting at 275 nm[J]. Optics Letters, 2021, 46(13): 3271-3274.
DOI
PMID
|
26 |
FENG F, ZHANG K, LIU Y B, et al. AlGaN-based deep-UV micro-LED array for quantum dots converted display with ultra-wide color gamut[J]. IEEE Electron Device Letters, 2022, 43(1): 60-63.
|
27 |
LIU Z Y, LU Y, CAO H C, et al. Etching-free pixel definition in InGaN green micro-LEDs[J]. Light, Science & Applications, 2024, 13(1): 117.
|
28 |
LEE D H, LEE J H, PARK J S, et al. Improving the leakage characteristics and efficiency of GaN-based micro-light-emitting diode with optimized passivation[J]. ECS Journal of Solid State Science and Technology, 2020, 9(5): 055001.
|
29 |
WONG M S, HWANG D, ALHASSAN A I, et al. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition[J]. Optics Express, 2018, 26(16): 21324-21331.
DOI
PMID
|
30 |
TIAN P F, MCKENDRY J J D, GONG Z, et al. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes[J]. Applied Physics Letters, 2012, 101(23): 231110.
|
31 |
WONG M S, LEE C M, MYERS D J, et al. Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation[J]. Applied Physics Express, 2019, 12(9): 097004.
|
32 |
ZHU Z F, TAO T, LIU B, et al. Improved optical and electrical characteristics of GaN-based micro-LEDs by optimized sidewall passivation[J]. Micromachines, 2022, 14(1): 10.
|
33 |
ELIASHEVICH I, LI Y X, OSINSKY A, et al. InGaN blue light-emitting diodes with optimized n-GaN layer[C]// Light-Emitting Diodes: Research, Manufacturing, and Applications III. San Jose, CA. SPIE, 1999: 28-36.
|
34 |
HAO G D, TANIGUCHI M, TAMARI N, et al. Current crowding and self-heating effects in AlGaN-based flip-chip deep-ultraviolet light-emitting diodes[J]. Journal of Physics D: Applied Physics, 2018, 51(3): 035103.
|
35 |
LU S P, BAI J X, LI H B, et al. 240 nm AlGaN-based deep ultraviolet micro-LEDs: size effect versus edge effect[J]. Journal of Semiconductors, 2024, 45(1): 012504.
|
36 |
WANG Z, SHAN X Y, ZHU S J, et al. Size-dependent sidewall defect effect of GaN blue micro-LEDs by photoluminescence and fluorescence lifetime imaging[J]. Optics Letters, 2023, 48(18): 4845-4848.
DOI
PMID
|
37 |
TAI J P, GUO W L, LI M M, et al. GaN based micro-light-emitting diode size effect and array display[J]. Acta Physica Sinica, 2020, 69(17): 177301.
|
38 |
LIANG K L, KUO W H, LIN C C, et al. The size-dependent photonic characteristics of colloidal-quantum-dot-enhanced micro-LEDs[J]. Micromachines, 2023, 14(3): 589.
|
39 |
MCKENDRY J J D, GREEN R P, KELLY A E, et al. High-speed visible light communications using individual pixels in a micro light-emitting diode array[J]. IEEE Photonics Technology Letters, 2010, 22(18): 1346-1348.
|
40 |
LI H B, LU S P, ZHU L C, et al. Efficiency boosting of 236 nm AlGaN-based micro-LEDs[J]. Journal of Physics D: Applied Physics, 2025, 58(1): 015109.
|