
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (11): 2015-2028.DOI: 10.16553/j.cnki.issn1000-985x.2025.0102
收稿日期:2025-05-11
出版日期:2025-11-20
发布日期:2025-12-11
通信作者:
肖 敏,博士,教授。E-mail:xyz012263@163.com
作者简介:卜瑞颖(2002—),女,甘肃省人,硕士研究生。E-mail:15213905572@163.com
基金资助:
BU Ruiying(
), XIAO Min(
), TIAN Jianghao, YANG Xin
Received:2025-05-11
Online:2025-11-20
Published:2025-12-11
摘要: 本文以泡沫镍(NF)为载体,NH4NO3为沉淀剂,采用水热合成法原位制备了层状镍铝水滑石(NiAlNO3-LDH@NF)。结合XRD与SEM表征及宏观吸附实验,探究了晶化时间与温度、Al(NO3)3浓度、固液比和Al3+/NH4NO3摩尔比对NiAlNO3-LDH@NF晶型结构、形貌与吸附性能的影响,系统考察了NiAlNO3-LDH@NF对Cr(VI)的吸附性能、机理及其再生性能。实验结果表明:在Al3+/NH4NO3摩尔比为2:3,固液比为4.5 mg/mL,Al3+浓度为10 mmol/L条件下,经100 ℃水热处理48 h,在NF载体上成功原位合成了具有良好结晶结构的NiAl-LDH纳米片,其具有高比表面积的层状结构,呈现出由纳米片组成的花朵状微球;在25 ℃、pH=5、投加量为3.4 g/L的条件下,NiAlNO3-LDH@NF对模拟废水中50 mg/L Cr(VI)去除率达80%以上,吸附量为10.05 mg/g,吸附等温线符合Langmuir模型,吸附动力学符合准二级动力学方程,为单分子层吸附,吸附速率受化学吸附机制控制;NiAlNO3-LDH@NF再生5次后,对Cr(VI)去除率仍达80%~85%,表明循环再生性能优异。
中图分类号:
卜瑞颖, 肖敏, 田江豪, 杨鑫. 镍铝水滑石原位合成及其对Cr(VI)的吸附性能研究[J]. 人工晶体学报, 2025, 54(11): 2015-2028.
BU Ruiying, XIAO Min, TIAN Jianghao, YANG Xin. In Situ Synthesis of Nickel-Aluminum Hydrotalcite and Its Adsorption Performance on Cr(VI)[J]. Journal of Synthetic Crystals, 2025, 54(11): 2015-2028.
| Number | Al3+/NH4NO3 molar ratio | Al3+ concentration/ (mmol·L-1) | Time/h | Temperature/℃ | Solid-liquid ratio/(mg·mL-1) | pH value | |
|---|---|---|---|---|---|---|---|
| Before | After | ||||||
| 1 | 2:3 | 10 | 48 | 100 | 4.50 | 3.62 | 5.49 |
| 2 | 2:3 | 10 | 6 | 100 | 4.50 | 3.62 | 3.40 |
| 3 | 2:3 | 1 | 48 | 100 | 4.50 | 3.95 | 7.88 |
| 4 | 1:3 | 10 | 48 | 100 | 4.50 | 3.71 | 5.72 |
| 5 | 2:3 | 10 | 48 | 60 | 4.50 | 3.62 | 5.60 |
| 6 | 2:3 | 10 | 48 | 100 | 0.75 | 3.64 | 4.72 |
| 7 | 1:3 | 10 | 24 | 100 | 4.50 | 3.75 | 5.31 |
表1 样品的制备条件
Table 1 Preparation conditions of samples
| Number | Al3+/NH4NO3 molar ratio | Al3+ concentration/ (mmol·L-1) | Time/h | Temperature/℃ | Solid-liquid ratio/(mg·mL-1) | pH value | |
|---|---|---|---|---|---|---|---|
| Before | After | ||||||
| 1 | 2:3 | 10 | 48 | 100 | 4.50 | 3.62 | 5.49 |
| 2 | 2:3 | 10 | 6 | 100 | 4.50 | 3.62 | 3.40 |
| 3 | 2:3 | 1 | 48 | 100 | 4.50 | 3.95 | 7.88 |
| 4 | 1:3 | 10 | 48 | 100 | 4.50 | 3.71 | 5.72 |
| 5 | 2:3 | 10 | 48 | 60 | 4.50 | 3.62 | 5.60 |
| 6 | 2:3 | 10 | 48 | 100 | 0.75 | 3.64 | 4.72 |
| 7 | 1:3 | 10 | 24 | 100 | 4.50 | 3.75 | 5.31 |
图1 不同晶化时间的NiAlNO3-LDH@NF的SEM照片。(a1)、(a2)NF空白样品;(b1)、(b2)6 h;(c1)、(c2)24 h;(d1)、(d2)48 h
Fig.1 SEM images of NiAlNO3-LDH@NF prepared for different crystallization time. (a1), (a2) NF blank sample; (b1), (b2) 6 h; (c1), (c2) 24 h; (d1), (d2) 48 h
图3 不同Al3+浓度制备的NiAlNO3-LDH@NF的SEM照片。(a1)、(a2)1 mmol/L;(b1)、(b2)10 mmol/L
Fig.3 SEM images of NiAlNO3-LDH@NF prepared with different concentrations of Al3+. (a1), (a2) 1 mmol/L; (b1), (b2) 10 mmol/L
图4 NiAlNO3-LDH@NF在不同固液比下的SEM照片。(a1)、(a2)0.75 mg/mL;(b1)、(b2)4.5 mg/mL
Fig.4 SEM images of NiAlNO3-LDH@NF prepared with different solid-liquid ratio. (a1), (a2) 0.75 mg/mL; (b1), (b2) 4.5 mg/mL
图5 NiAlNO3-LDH@NF在不同晶化温度下的SEM照片。(a1)、(a2) 60 ℃; (b1)、(b2) 100 ℃
Fig.5 SEM images of NiAlNO3-LDH@NF prepared at different crystallization temperatures. (a1), (a2) 60 ℃, (b1), (b2) 100 ℃
图6 不同Al3+/NH4NO3摩尔比制备的NiAlNO3-LDH@NF的SEM照片。(a1)、(a2)1:3;(b1)、(b2)2:3
Fig.6 SEM images of NiAlNO3-LDH@NF prepared with different molar ratio of Al3+/NH4NO3. (a1), (a2) 1:3; (b1), (b2) 2:3
图7 水热合成前、后混合液体系pH值及制备条件对Cr(VI)吸附性能
Fig.7 Effect of preparation conditions on the adsorption properties of Cr(VI) and pH value in the hybrid system before and after hydrothermal synthesis
图8 吸附Cr(VI)前(a)、后(b)NiAlNO3-LDH@NF的SEM照片(插图为对应EDS图)
Fig.8 SEM images of NiAlNO3-LDH@NF before (a) and after (b) adsorption of Cr (VI) (insert corresponds to EDS spectra)
图13 NiAlNO3-LDH@NF对Cr(VI)的吸附等温线。(a)Langmuir;(b)Freundlich
Fig.13 Adsorption isotherms of Cr(VI) adsorption onto NiAlNO3-LDH@NF. (a) Langmuir; (b) Freundlich
| Adsorbent | Langmuir equation | Freundlich equation | ||||
|---|---|---|---|---|---|---|
| b/(L·mg-1) | q0/(mg·g-1) | R2 | Kf/(mg·g-1) | n | R2 | |
| NiAlNO3-LDH@NF | 0.205 | 9.56 | 0.997 60 | 4.17 | 5.40 | 0.778 56 |
表2 NiAlNO3-LDH@NF对Cr(VI)的吸附等温线参数
Table 2 Adsorption isotherm parameters of NiAlNO3-LDH@NF sample for Cr(VI)
| Adsorbent | Langmuir equation | Freundlich equation | ||||
|---|---|---|---|---|---|---|
| b/(L·mg-1) | q0/(mg·g-1) | R2 | Kf/(mg·g-1) | n | R2 | |
| NiAlNO3-LDH@NF | 0.205 | 9.56 | 0.997 60 | 4.17 | 5.40 | 0.778 56 |
图14 NiAlNO3-LDH@NF对Cr(VI)的吸附动力学模拟。(a)准一级动力学;(b)准二级动力学
Fig.14 Adsorption kinetics models of NiAlNO3-LDH@NF for Cr(VI). (a) Pseudo-first-order kinics; (b) pseudo-second-order reaction kinetic
| Adsorbent | Pseudo-first-order kinetics parameter | Pseudo-second-order kinetics parameter | ||||
|---|---|---|---|---|---|---|
Correlation coefficient R2 | Rate constant k1 | Equilibrium adsorption capacity qe/(mg·g-1) | Correlation coefficient R2 | Rate constant k2 | Equilibrium adsorption capacity qe/(mg·g-1) | |
| LDH@NF | 0.502 18 | 0.002 303 | 0.873 5 | 0.999 99 | 0.023 74 | 10.38 |
表3 NiAlNO3-LDH@NF准一级、准二级吸附动力学模型的动力学参数
Table 3 Pseudo-first-order and pseudo-second-order adsorption kinetic parameters of NiAlNO3-LDH@NF
| Adsorbent | Pseudo-first-order kinetics parameter | Pseudo-second-order kinetics parameter | ||||
|---|---|---|---|---|---|---|
Correlation coefficient R2 | Rate constant k1 | Equilibrium adsorption capacity qe/(mg·g-1) | Correlation coefficient R2 | Rate constant k2 | Equilibrium adsorption capacity qe/(mg·g-1) | |
| LDH@NF | 0.502 18 | 0.002 303 | 0.873 5 | 0.999 99 | 0.023 74 | 10.38 |
| Adsorbent | qmax/ (mg·g-1) | conditions | Regeneration ratio/% | Refence | |||
|---|---|---|---|---|---|---|---|
| C0/(mg·L-1) | pH value | t/min | Dosage/(g·L-1) | ||||
| MgAlNO3-LDH@γ-Al2O3 | 22.36 | 50 | 6 | 90 | 0.6 | 80 | [ |
| MgAl-LDH@Graphene | 49.34 | 50 | 6 | 1 860 | 1.0 | 92.6 | [ |
| MgAlCO3-LDH@γ-Al2O3 | 27.80 | 80 | 6 | 300 | 0.57 | 90 | [ |
| NiAlNO3-LDH@NF | 10.05 | 50 | 5 | 90 | 3.4 | 80 | This work |
表4 原位负载型LDH材料对Cr(VI)最大单层吸附容量与稳定性对比表
Table 4 Comparison of maximum monolayer adsorption capacity and stability for Cr(VI) on in-situ synthesis of LDH materials
| Adsorbent | qmax/ (mg·g-1) | conditions | Regeneration ratio/% | Refence | |||
|---|---|---|---|---|---|---|---|
| C0/(mg·L-1) | pH value | t/min | Dosage/(g·L-1) | ||||
| MgAlNO3-LDH@γ-Al2O3 | 22.36 | 50 | 6 | 90 | 0.6 | 80 | [ |
| MgAl-LDH@Graphene | 49.34 | 50 | 6 | 1 860 | 1.0 | 92.6 | [ |
| MgAlCO3-LDH@γ-Al2O3 | 27.80 | 80 | 6 | 300 | 0.57 | 90 | [ |
| NiAlNO3-LDH@NF | 10.05 | 50 | 5 | 90 | 3.4 | 80 | This work |
| [1] | WEI Y Q, XU X Y, ZHAO L, et al. Migration and transformation of chromium in unsaturated soil during groundwater table fluctuations induced by rainfall[J]. Journal of Hazardous Materials, 2021, 416: 126229. |
| [2] | LEE C G, PARK J A, LEE I, et al. Preparation of magnetic alginate-layered double hydroxide composite adsorbents and removal of Cr(VI) from aqueous solution[J]. Water Supply, 2013, 13(3): 846-853. |
| [3] | DONG Y C, KONG X R, LUO X S, et al. Adsorptive removal of heavy metal anions from water by layered double hydroxide: a review[J]. Chemosphere, 2022, 303: 134685. |
| [4] | 段雪, 张法智. 插层组装与功能材料[M]. 北京: 化学工业出版社, 2007. |
| DUAN X, ZHANG F Z. Insertion assembly and functional materials[M]. Beijing: Chemical Industry Press, 2007 (in Chinese). | |
| [5] | 张蕊, 李殿卿, 张法智, 等. γ-Al2O3载体孔内原位合成水滑石[J]. 复旦学报(自然科学版), 2003, 42(3): 333-338. |
| ZHANG R, LI, D, ZHANG F, et al. The in situ synthesis of LDHs in the pores of γ-Al2O3 [J]. Journal of Fudan University (Natural Science), 2003, 42(3): 333-338 (in Chinese). | |
| [6] | 毛纾冰, 李殿卿, 张法智, 等. γ-Al2O3表面原位合成Ni-Al-CO3 LDHs研究[J]. 无机化学学报, 2004, 20(5): 596-602+495. |
| MAO S B, LI D Q, ZHANG F Z, et al. In situ synthesis of Ni-Al-CO3 LDHs on the surface of γ-Al2O3 [J]. Chinese Journal of Inorganic Chemistry, 2004, 20(5): 596-602+495 (in Chinese). | |
| [7] | LI S F, QI F, XIAO M, et al. In situ synthesis of layered double hydroxides on γ-Al2O3 and its application in chromium(VI) removal[J]. Water Science and Technology, 2017, 75(6): 1466-1473. |
| [8] | YAMADA H, WATANABE Y, HASHIMOTO T, et al. Synthesis and characterization of linde A zeolite coated with a layered double hydoxide[J]. Journal of the European Ceramic Society, 2006, 26(4/5): 463-467. |
| [9] | LIU Y, WANG N Y, PAN J H, et al. In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates[J]. Journal of the American Chemical Society, 2014, 136(41): 14353-14356. |
| [10] | HAYASHI F, SHIRASAKI A, WAGATA H, et al. Flux-assisted fabrication of vertically aligned layered double hydroxide plates on in situ formed alumina particles[J]. Crystal Growth & Design, 2015, 15(2): 732-736. |
| [11] | TAN X L, FANG M, REN X M, et al. Effect of silicate on the formation and stability of Ni-Al LDH at the γ-Al2O3 surface[J]. Environmental Science & Technology, 2014, 48(22): 13138-13145. |
| [12] | YUAN X Y, WANG Y F, WANG J, et al. Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal[J]. Chemical Engineering Journal, 2013, 221: 204-213. |
| [13] | WANG B, LIU Q, QIAN Z Y, et al. Two steps in situ structure fabrication of Ni-Al layered double hydroxide on Ni foam and its electrochemical performance for supercapacitors[J]. Journal of Power Sources, 2014, 246: 747-753. |
| [14] | ZHANG Z, YE K, DU H, et al. In situ electrodeposition synthesis of CoP@NiFe LDH heterostructure as high-performance electrocatalyst for enhanced seawater electrolysis[J]. International Journal of Hydrogen Energy, 2024, 62: 722-731. |
| [15] | LIAO D C, LIU X M, ZONG S C, et al. In-situ synthesis of hierarchical NiFe-LDH/NiO nanoflowers on nickel foam as bifunctional catalyst for overall water splitting[J]. International Journal of Hydrogen Energy, 2025, 107: 312-320. |
| [16] | CHEN S Y, SHI C, TAN X Y, et al. In-situ growth of NiCo-LDH-S nanosheets with granular NiS/Co9S8 on nickel foam as self-supported electrode for high-performance supercapacitors[J]. Journal of Alloys and Compounds, 2023, 950: 169830. |
| [17] | CHOI Y, MUN S, LEE K B. Direct synthesis of vertically oriented Co-Mg-Al layered double hydroxide on spherical γ-Al2O3 for passive NO x adsorber[J]. Applied Surface Science, 2025, 687: 162248. |
| [18] | CHEN H Y, ZHANG F Z, CHEN T, et al. Comparison of the evolution and growth processes of films of M/Al-layered double hydroxides with M=Ni or Zn[J]. Chemical Engineering Science, 2009, 64(11): 2617-2622. |
| [19] | 国家环境保护局. 水质 六价铬的测定 二苯碳酰二肼分光光度法: [S]. 北京: 中国标准出版社, 1987. |
| National Environmental Protection Agency. Water quality-determination of hexavalent chromium-diphenylcarbazide spectrophotometric method: [S]. Beijing: China Standards Press, 1987 (in Chinese). | |
| [20] | 韩银凤, 张瑞林. 以泡沫镍为基底的镍铁类水滑石的制备及表征[J]. 化学工程师, 2018, 32(9): 67-69. |
| HAN Y F, ZHANG R L. Preparation and characterization of Ni-Fe layered double hydroxides on nifoam[J]. Chemical Engineer, 2018, 32(9): 67-69 (in Chinese). | |
| [21] | 王东东. 泡沫镍基整体式催化剂的原位构筑及催化VOCs应用[D]. 北京: 中国科学院大学, 2021. |
| WANG D D. In situ preparation of nickel foam monolithic catalysis and its catalytic application for VOCs removal[D]. Beijing: University of Chinese Academy of Sciences, 2021 (in Chinese). | |
| [22] | HE S, ZHAO Y F, WEI M, et al. Fabrication of hierarchical layered double hydroxide framework on aluminum foam as a structured adsorbent for water treatment[J]. Industrial & Engineering Chemistry Research, 2012, 51(1): 285-291. |
| [23] | WANG W W, ZHOU J B, ACHARI G, et al. Cr(VI) removal from aqueous solutions by hydrothermal synthetic layered double hydroxides: adsorption performance, coexisting anions and regeneration studies[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457: 33-40. |
| [24] | ZHANG L P, ZHAO J L, ZHANG S W, et al. Ultrasound-assisted synthesis of single layer MgAl hydrotalcite for the removal of Cr(VI) in solution and soil[J]. Applied Clay Science, 2021, 204: 106025. |
| [25] | HUANG X X, LIU Y G, LIU S B, et al. Effective removal of Cr(vi) using β-cyclodextrin-chitosan modified biochars with adsorption/reduction bifuctional roles[J]. RSC Advances, 2016, 6(1): 94-104. |
| [26] | 鲜 雯, 黄 阳, 罗立涛, 等. 煅烧水滑石同时去除废水中Sb(Ⅴ)和刚果红的性能及机制[J]. 化工矿物与加工, 2024, 53(10): 31-38. |
| XIAN W, HUANG Y, LUO L T, et al. Properties and mechanism of simultaneous removal of Sb(Ⅴ) and Congo red from wastewater by calcined hydrotalc[J]. Industrial Minerals & Processing, 2024, 53(10): 31-38 (in Chinese). | |
| [27] | YU Q Q, ZHENG Y Q, WANG Y P, et al. Highly selective adsorption of phosphate by pyromellitic acid intercalated ZnAl-LDHs: assembling hydrogen bond acceptor sites[J]. Chemical Engineering Journal, 2015, 260: 809-817. |
| [28] | GAO D G, JI H D, LI R L, et al. Advancing sustainable phosphorus removal and recovery with metal-organic frameworks (MOFs)[J]. Chemical Engineering Journal, 2023, 475: 145949. |
| [29] | 孙 娜, 李 杨, 黄 阳, 等. 甲硫氨酸改性MgFe水滑石对Sb(Ⅴ)和As(Ⅴ)的吸附性能[J]. 环境工程学报, 2022, 16(11): 3538-3548. |
| SUN N, LI Y, HUANG Y, et al. Adsorption performance of Sb(Ⅴ) and As(Ⅴ) by methionine modified MgFe layered double hydroxides[J]. Chinese Journal of Environmental Engineering, 2022, 16(11): 3538-3548 (in Chinese). | |
| [30] | MO W, WEI C C, HE C Y, et al. Fe3O4@Mg/Al/Fe-LDH adsorption properties of As(V) and As(III) co-existing in water[J]. Journal of Water Process Engineering, 2024, 68: 106444. |
| [31] | HE C Y, MO W, YANG Y, et al. Microwave-assisted modification of magnetic Mg/Al/Fe-LDH hydrotalcite for efficient arsenic removal from water[J]. Journal of Environmental Management, 2025, 381: 125228. |
| [32] | MARISKA S, ZHANG J W, CHIEN H H, et al. Adsorptive removal of phosphate and nitrate by layered double hydroxides through the memory effect and in situ synthesis[J]. Applied Water Science, 2025, 15(2): 42. |
| [1] | 王子豪, 刘嘉钰, 董子豪, 王宇鑫, 许雅旭, 朱禹. 缺陷氨氟复合功能化UiO-66的制备及其青蒿琥酯吸附性能的研究[J]. 人工晶体学报, 2025, 54(5): 890-897. |
| [2] | 成爽, 马佳, 孙畅, 李晓慧. 嘧啶甲酰胺配体构筑的Anderson型多酸基金属-有机配合物的合成、结构及电化学传感性能研究[J]. 人工晶体学报, 2025, 54(11): 1967-1973. |
| [3] | 李苗, 郑易萌, 孙已婷, 毛玉玲, 朱百丽, 崔术新. 基于4,5-咪唑二羧酸配体镉配位化合物的制备及性能[J]. 人工晶体学报, 2025, 54(1): 121-125. |
| [4] | 曹宇鹏, 张汉杰, 黄继庆, 郭伟, 公绪滨, 方涛. 新型磷酸二氢铝镓金属无机骨架结构的合成及其催化乙醛制备丁醇醛的研究[J]. 人工晶体学报, 2024, 53(4): 714-720. |
| [5] | 林涛海, 张军, 葛庆, 张钢强, 张美丽. 基于柔性苯二乙酸Co/Ni配位聚合物的构筑和电化学性能研究[J]. 人工晶体学报, 2024, 53(3): 534-540. |
| [6] | 徐智祥, 安志烜, 李玉瑶, 孙畅, 李晓慧. 双吡啶双酰胺配体构筑的钴配合物的合成、结构及光催化性能研究[J]. 人工晶体学报, 2024, 53(10): 1791-1797. |
| [7] | 孙佳馨, 李爽, 李晓慧, 史思柳, 刘宝慧, 齐嘉慧, 李嘉琦, 张众. 3-(3-吡啶)丙烯酸配体杂化的Keggin型多酸基超分子化合物的合成、结构及光催化性能[J]. 人工晶体学报, 2023, 52(8): 1485-1490. |
| [8] | 刘晓慧, 李慧, 徐娜. 还原型磷钼酸盐构筑的多酸基超分子化合物的合成及电催化性能研究[J]. 人工晶体学报, 2023, 52(11): 2034-2040. |
| [9] | 王静怡, 张众, 王梓兰, 于鑫颖, 由君颐, 朱君怡, 杨琳. 吡啶鎓盐配体构筑的多钼酸基配合物的合成、结构及光催化性能[J]. 人工晶体学报, 2022, 51(7): 1227-1232. |
| [10] | 陈心怡, 程宏飞, 赵炳新, 胡棉舒, 贾晓辉. 高岭石基介孔复合材料的二氧化碳吸附性能[J]. 人工晶体学报, 2021, 50(9): 1756-1764. |
| [11] | 李瑞, 张潇, 张璐璐, 谢芳霞, 张小超, 王雅文, 樊彩梅. 原位合成Bi3O4Br/Bi12O17Br2光催化剂及其对磺胺甲噁唑降解性能[J]. 人工晶体学报, 2021, 50(9): 1735-1744. |
| [12] | 栾照金, 闫共芹, 谈尚华. SnO2/石墨分级纳米异质结构的合成及其电化学性能研究[J]. 人工晶体学报, 2021, 50(8): 1503-1510. |
| [13] | 熊远鹏, 李锐星, 张越, 孔繁东, 钟麒. 水热法合成CsxWO3纳米棒及其红外吸收性能[J]. 人工晶体学报, 2021, 50(6): 1036-1043. |
| [14] | 张众, 杨琳, 李晓慧, 王梓兰, 王静怡. 草酸配体修饰的锆取代型硅钨-氧簇合物的合成、结构和电化学性质研究[J]. 人工晶体学报, 2021, 50(5): 884-888. |
| [15] | 代思玉, 刘宇奇, 李杨华, 王新颖, 李玮, 张青青. 双配体配位的Ni(Ⅱ)、Cu(Ⅱ)金属配合物的结构和性能[J]. 人工晶体学报, 2021, 50(12): 2283-2292. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS