| [1] |
BALMER R S, BRANDON J R, CLEWES S L, et al. Chemical vapour deposition synthetic diamond: materials, technology and applications[J]. Journal of Physics Condensed Matter, 2009, 21(36): 364221.
|
| [2] |
孔月婵, 杨 扬, 周建军, 等. 碳基射频电子器件研究进展[J]. 固体电子学研究与进展, 2020, 40(2): 94-103+121.
|
|
KONG Y C, YANG Y, ZHOU J J, et al. Recent progress on carbon-based RF devices[J]. Research & Progress of SSE, 2020, 40(2): 94-103+121 (in Chinese).
|
| [3] |
SONG J, LI H D, LIN F, et al. Plasmon-enhanced photoluminescence of Si-V centers in diamond from a nanoassembled metal-diamond hybrid structure[J]. CrystEngComm, 2014, 16(36): 8356.
|
| [4] |
杨名超. 氢终端金刚石表面氧处理及金刚石场效应晶体管稳定性的研究[D]. 长春: 吉林大学, 2020.
|
|
YANG M C. Study on surface oxygen treatment of hydrogen terminated diamond and stability of diamond field effect transistor[D]. Changchun: Jilin University, 2020 (in Chinese).
|
| [5] |
王利斌, 张逸韵, 黄广伟, 等. 单晶金刚石探测器γ射线响应研究[J]. 核技术, 2025, 48(3): 95-102.
|
|
WANG L B, ZHANG Y Y, HUANG G W, et al. Single crystal diamond detector for gamma dose measurement[J]. Nuclear Techniques, 2025, 48(3): 95-102 (in Chinese).
|
| [6] |
WANG C J, SHIH M H, CHEN L T. A wideband open-slot antenna with dual-band circular polarization[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1306-1309.
|
| [7] |
IMANISHI S, HORIKAWA K, OI N, et al. 3.8 W/mm power density for ALD Al2O3-based two-dimensional hole gas diamond MOSFET operating at saturation velocity[J]. IEEE Electron Device Letters, 2018, 40(2): 279-282.
|
| [8] |
FENG Z H, WANG J J, HE Z Z, et al. Polycrystal diamond MESFETS by Au-mask technology for RF applications[J]. Science in China: Technical Sciences, 2013, 56(4): 957-962.
|
| [9] |
YU X X, HU W X, ZHOU J J, et al. 1 W/mm output power density for H-terminated diamond MOSFETs with Al2O3/SiO2 bi-layer passivation at 2 GHz[J]. IEEE Journal of the Electron Devices Society, 2020, 9: 160-164.
|
| [10] |
LUO H, AJMAL K M, LIU W, et al. Polishing and planarization of single crystal diamonds: state-of-the-art and perspectives[J]. International Journal of Extreme Manufacturing, 2021, 3(2): 022003.
|
| [11] |
葛志杰. 基于相变和塑性变形的单晶金刚石研磨行为规律及各向异性机理研究[D]. 杭州: 浙江理工大学, 2023.
|
|
GE Z J. Study on grinding behavior and anisotropy mechanism of single-crystal diamond based on phase transformation and plastic deformation[D]. Hangzhou: Zhejiang Sci-Tech University, 2023 (in Chinese).
|
| [12] |
KAWARADA H. High-current metal oxide semiconductor field-effect transistors on H-terminated diamond surfaces and their high-frequency operation[J]. Japanese Journal of Applied Physics, 2012, 51(9R): 090111.
|
| [13] |
宋修曦, 马志斌, 丁康俊, 等. 晶面取向对同质外延单晶金刚石生长的影响[J]. 真空科学与技术学报, 2017, 37(2): 201-205.
|
|
SONG X X, MA Z B, DING K J, et al. Homoepitaxial growth of diamond on low index facets of natural diamond substrate[J]. Chinese Journal of Vacuum Science and Technology, 2017, 37(2): 201-205 (in Chinese).
|
| [14] |
YAMAMURA K, LUO H, DENG H. Plasma-assisted polishing of single-crystal diamond: Mechanism and surface quality optimization[J]. International Journal of Extreme Manufacturing, 2022, 4(2): 025003.
|
| [15] |
SUZUKI K, IWAI M, UEMATSU T, et al. Material removal mechanism in dynamic friction polishing of diamond[J]. Key Engineering Materials, 2003, 238-239(3): 235-240
|
| [16] |
KHAN M A, LUO H, DENG H, et al. Ultra-smooth and damage-free surface finishing of single crystal diamond by dynamic friction polishing [J]. Precision Engineering, 2020, 64: 258-266.
|
| [17] |
CHEN Y, ZHANG L C, TANG F. Surface integrity of PCD composites generated by dynamic friction polishing: effect of processing conditions[J]. Diamond and Related Materials, 2012, 26: 25-31.
|
| [18] |
张浩晨, 徐 锴, 燕增宇, 等. 单晶金刚石的动态摩擦抛光[J]. 中国科学院大学学报(中英文), 2024, 41(5): 604-611.
|
|
ZHANG H C, XU K, YAN Z Y, et al. Dynamic friction polishing of single crystal diamond[J]. Journal of University of Chinese Academy of Sciences, 2024, 41(5): 604-611 (in Chinese).
|
| [19] |
BOKHONOV B B, GERASIMOV K B, MIKHAILENKO M A. Morphological features of synthetic diamond microcrystals subjected to oxidative etching[J]. Diamond and Related Materials, 2023, 136: 109934.
|
| [20] |
刘厚盛, 郭世峰, 陈 明, 等. 微波等离子化学气相沉积法制备高浓度金刚石-空位色心及其性能研究[J]. 物理学报, 2025, 74(2): 028102.
|
|
LIU H S, GUO S F, CHEN M, et al. High-concentration diamond nitrogen vacancy color center fabricated by microwave plasma chemical vapor deposition and its properties[J]. Acta Physica Sinica, 2025, 74(2): 028102 (in Chinese).
|
| [21] |
贺占清. 单晶金刚石硅空位色心纳米柱的可控制备及其荧光增强研究[D]. 包头: 内蒙古科技大学, 2024.
|
|
HE Z Q. Controllable preparation and fluorescence enhancement of single-crystal diamond silicon vacancy color center nanowires[D]. Baotou: Inner Mongolia University of Science & Technology, 2024 (in Chinese).
|
| [22] |
KUNTUMALLA M K, ZHENG Y S, ATTRASH M, et al. Microwave N2 plasma nitridation of H-diamond (111) surface studied by ex situ XPS, HREELS, UPS, TPD, LEED and DFT[J]. Applied Surface Science, 2022, 600: 154085.
|
| [23] |
WANG H C, JIN Z J, LI X H, et al. First-principles study of the microstructure evolution of the diamond (110) surface with the adsorption of Fe atoms[J]. Applied Surface Science, 2023, 613: 156053.
|
| [24] |
李丹丹, 陈 鑫, 王 宏, 等. 三维拉曼成像技术用于纳米金刚石与细胞相互作用过程的研究[J]. 光谱学与光谱分析, 2018, 38(9): 2770-2777.
|
|
LI D D, CHEN X, WANG H, et al. Visualization of the interaction between NDs and cells with 3D Raman imaging[J]. Spectroscopy and Spectral Analysis, 2018, 38(9): 2770-2777 (in Chinese).
|
| [25] |
LUO X, LI Z S, LU J, et al. High-efficiency polishing of single-crystal diamond by dynamic friction technique[J]. Diamond and Related Materials, 2018, 87:156-162.
|
| [26] |
KAWARADA H, ΜMEZAWA H, ISHIZAKA H, et al. Microwave performance of diamond MOSFET with 2D hole gas[J]. Japanese Journal of Applied Physics, 2012, 51: 090111.
|
| [27] |
ZHU X H, BI T, YUAN X, et al. C-Si interface on SiO2/(111) diamond p-MOSFETs with high mobility and excellent normally-off operation[J]. Applied Surface Science, 2022,580: 153368.
|