欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (9): 1566-1573.DOI: 10.16553/j.cnki.issn1000-985x.2025.0060

• 研究论文 • 上一篇    下一篇

高迁移率的硼掺杂单晶金刚石微波等离子体化学气相沉积生长及电学性质研究

胡愈硕1(), 杨国健2, 曹光宇2, 刘赐恩1, 张星2, 龙浩3(), 徐翔宇1(), 张洪良1,4()   

  1. 1.厦门大学化学化工学院,厦门 361005
    2.化合积电(厦门)半导体科技有限公司,厦门 361203
    3.厦门大学电子科学与技术学院,厦门 361100
    4.厦门大学物理科学与技术学院,厦门 361005
  • 收稿日期:2025-03-26 出版日期:2025-09-20 发布日期:2025-09-23
  • 通信作者: 龙浩,徐翔宇,张洪良
  • 作者简介:胡愈硕(2001—),男,湖北省人,博士研究生。E-mail:20620230156635@stu.xmu.edu.cn
  • 基金资助:
    国家自然科学基金(22275154)

Growth and Electrical Properties of High-Mobility Boron-Doped Single Crystal Diamond via Microwave Plasma Chemical Vapor Deposition

HU Yushuo1(), YANG Guojian2, CAO Guangyu2, LIU Cien1, ZHANG Xing2, LONG Hao3(), XU Xiangyu1(), ZHANG Hongliang1,4()   

  1. 1.College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,China
    2.Compound Semiconductor (Xiamen) Technology Co.,Ltd.,Xiamen 361203,China
    3.School of Electronic Science and Engineering,Xiamen University,Xiamen 361100,China
    4.College of Physical Science and Technology,Xiamen University,Xiamen 361005,China
  • Received:2025-03-26 Online:2025-09-20 Published:2025-09-23
  • Contact: LONG Hao, XU Xiangyu, ZHANG Hongliang

摘要: 高结晶质量、高迁移率的硼掺杂单晶金刚石薄膜是实现高耐压高功率电子器件的关键。本研究采用微波等离子体化学气相沉积(MPCVD)技术,结合两步生长法与低温氧气辅助生长策略,成功制备了高迁移率的硼掺杂单晶金刚石,并实现了其电学性能的广泛调控。所生长薄膜的X射线衍射峰半峰全宽(FWHM)小于60″,空穴浓度可在1014~1017 cm-3调控,最大室温空穴迁移率超过1 400 cm2/(V·s),达到国际先进水平。此外,本文结合输运性质测试和高分辨X射线光电子能谱(XPS)测试研究了所生长掺硼单晶金刚石样品的电子结构,指出了高晶体质量是获得高迁移率的重要原因,研究结果为高迁移率硼掺杂单晶金刚石的生长和器件应用提供了理论参考。

关键词: 单晶金刚石; 外延生长; 硼掺杂; MPCVD; 电学性质; 迁移率; 功率器件

Abstract: High-crystallinity and high-mobility boron-doped single crystal diamond films are the key to realizing high-voltage and high-power electronic devices. In this study, microwave plasma chemical vapor deposition (MPCVD) technology was employed, combined with a two-step growth method and a low-temperature oxygen-assisted growth strategy, to successfully prepare high-mobility boron-doped single crystal diamond films with extensive electrical property tuning. The films were characterized using X-ray diffraction (XRD), Hall effect measurements, and X-ray photoelectron spectroscopy (XPS). XRD analysis reveals an XRD peak full width at half maximum (FWHM) of less than 60″, indicating excellent crystalline quality. Hall effect measurements demonstrats precise control over hole concentrations ranging from 1014 to 1017 cm-3, with a maximum room-temperature hole mobility exceeding 1 400 cm2/(V·s), reaching the international advanced level. XPS characterization confirms successful boron incorporation and reveals a direct correlation between crystalline perfection and high carrier mobility, identifying high crystalline quality as a key factor for achieving high mobility. This work establishes a robust technological framework for synthesizing high-quality boron-doped diamond films, providing key materials for the development of high-performance diamond devices.

Key words: single crystal diamond; epitaxial growth; boron doping; MPCVD; electrical property; mobility; power device

中图分类号: